
IBM SDK, Java Technology Edition
Version 6

Windows User Guide

IBM

IBM SDK, Java Technology Edition
Version 6

Windows User Guide

IBM

Note
Before you use this information and the product it supports, read the information in “Notices” on page 123.

Copyright information

This edition of the user guide applies to the IBM SDK, Java Technology Edition, Version 6, for all supported 32-bit
Windows architectures, and to all subsequent releases, modifications, and service refreshes, until otherwise
indicated in new editions.

The platforms this guide applies to are:
v IBM 32-bit SDK for Windows, Java Technology Edition, Version 6

v IBM 32-bit Runtime Environment for Windows, Java Technology Edition, Version 6

Note: The SDK and Runtime Environment are available only as part of an IBM product or service.

Portions © Copyright 1997, 2016, Oracle and/or its affiliates.

© Copyright IBM Corporation 2003, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface v

Chapter 1. Overview 1
Version compatibility 1
Migrating from earlier IBM SDK or JREs 1
Supported environments 2

Chapter 2. Contents of the SDK and
Runtime Environment 5
Contents of the Runtime Environment 5
Contents of the SDK 6

Chapter 3. Installing and configuring the
SDK and Runtime Environment 9
Installing and configuring the SDK and Runtime
Environment 9
Enabling the IBM Accessibility Bridge 9
Disabling Java Accessibility support 9
Information for European language users 9
Setting the path 10
Setting the class path 10
Updating your SDK or JRE for Daylight Saving
Time changes 11

Chapter 4. Running Java applications 13
The java and javaw commands 13

Obtaining version information 13
Specifying Java options and system properties. . 14
Standard options 15
Globalization of the java command 16

Executing a Java file automatically. 17
Running Java applications with native assistive
technologies 17
The Just-In-Time (JIT) compiler 17

Disabling the JIT 18
Enabling the JIT 18
Determining whether the JIT is enabled 18

Specifying a garbage collection policy 19
Garbage collection options 19
Increased heap sizes using a split heap 20
Pause time 20
Pause time reduction 21
Environments with very full heaps 21

Euro symbol support 22
Using Indian and Thai input methods 22

Chapter 5. Developing Java
applications 23
Using XML 23

Migrating to the XL-TXE-J 25
Securing Java API for XML processing (JAXP)
against malformed input 27
XML reference information 27

Debugging Java applications. 32

Java Debugger (JDB) 32
Selective debugging 33

Determining whether your application is running on
a 32-bit or 64-bit JVM 34
Determining which JVM version your application is
running on 34
How the JVM processes signals. 35

Signals used by the JVM 36
Linking a native code driver to the
signal-chaining library 36

Writing JNI applications 37
Supported compilers 37
JNI runtime linking. 37

Configuring large page memory allocation 39
CORBA support 40

System properties for tracing the ORB 41
System properties for tuning the ORB 42
Java security permissions for the ORB 42
ORB implementation classes 43

RMI over IIOP 43
Implementing the Connection Handler Pool for RMI 43
Enhanced BigDecimal 43
Support for the Java Attach API 44

Chapter 6. Plug-in, Applet Viewer and
Web Start 47
Using the Java plug-in. 47

Supported browsers 47
Installing the Java plug-in using the Java control
panel 47
Secure Static Versioning (SSV) support 48
Common Document Object Model (DOM)
support. 48
Using DBCS parameters 49

Working with applets 49
Running and debugging applets with the Applet
Viewer 49
Unique CLSIDs 50

Using Web Start 50
Running Web Start 51
WebStart Secure Static Versioning 51

Distributing Java applications 52

Chapter 7. Class data sharing between
JVMs 53
Overview of class data sharing 53
Class data sharing command-line options 55
Creating, populating, monitoring, and deleting a
cache 58
Performance and memory consumption 59
Considerations and limitations of using class data
sharing 59

Cache size limits. 60
JVMTI RetransformClasses() is unsupported . . 60
Runtime bytecode modification 60

© Copyright IBM Corp. 2003, 2016 iii

|
||

|
||

Operating system limitations 61
Using SharedClassPermission 61

Adapting custom class loaders to share classes . . 61

Chapter 8. Service and support for
independent software vendors 63

Chapter 9. Accessibility 65
Keyboard traversal of JComboBox components in
Swing 65
Web Start accessibility 65

Chapter 10. General note about
security 67

Appendix. Appendixes 69
Command-line options 69

Specifying command-line options 69

General command-line options 70
System property command-line options 71
JVM command-line options 83
JVM -XX command-line options 97
JIT and AOT command-line options 98
Garbage Collector command-line options . . . 101

Default settings for the JVM 112
Known issues and limitations 114
Support for virtualization software 121

Notices 123
Trademarks 125
Terms and conditions for product documentation 125
IBM Online Privacy Statement. 126

iv IBM SDK, Java Technology Edition, Version 6: Windows User Guide

Preface

This guide provides general information about the IBM® SDK, Java™ Technology
Edition, Version 6, for all supported 32-bit Windows architectures. The guide gives
specific information about any differences in the IBM implementation compared
with the Oracle implementation.

Read this information in conjunction with the documentation on the Oracle Web
site: http://www.oracle.com/technetwork/java/index.html.

Late breaking information about this release that is not available in the guide can
be found here: http://www.ibm.com/support/docview.wss?uid=swg21587401.

The Diagnostics Guide provides more detailed information about the IBM Virtual
Machine for Java.

The terms Runtime Environment and Java Virtual Machine are used interchangeably
throughout this guide.

This guide is part of a release and is applicable only to that particular release.
Make sure that you have the guide appropriate to the release you are using.

For Service Refresh 9 and earlier
The guide is available in the code package. Technical changes made for a
version of the user guide are indicated by blue chevrons.

For Service Refresh 10 and later
The guide is available online. Any modifications made to this user guide to
support a later service refresh are indicated by graphic images, for
example: In this image, SR11 indicates that changes are made for

Service Refresh 11. End of changes are marked by

The guide is also available for download as a PDF. Technical changes made
for this version are indicated by vertical bars at the beginning of the line.

To determine the service refresh or fix pack level of an installed version, see
“Obtaining version information” on page 13.

The Program Code is not designed or intended for use in real-time applications
such as (but not limited to) the online control of aircraft, air traffic, aircraft
navigation, or aircraft communications; or in the design, construction, operation, or
maintenance of any nuclear facility.

© Copyright IBM Corp. 2003, 2016 v

http://www.oracle.com/technetwork/java/index.html
http://www.ibm.com/support/docview.wss?uid=swg21587401

vi IBM SDK, Java Technology Edition, Version 6: Windows User Guide

Chapter 1. Overview

The IBM SDK is a development environment for writing and running applets and
applications that conform to the Java 6 Core Application Program Interface (API).

The SDK includes the Runtime Environment for Windows, which enables you only
to run Java applications. If the SDK was installed, the Runtime Environment is
included.

The Runtime Environment contains the Java Virtual Machine and supporting files
including class files. The Runtime Environment contains only a subset of the
classes that are found in the SDK and allows you to support a Java program at run
time but does not provide compilation of Java programs. The Runtime
Environment for Windows does not include any of the development tools, for
example appletviewer.exe or the Java compiler (javac.exe), or classes that are only
for development systems.

Version compatibility
In general, any applet or application that ran with a previous version of the SDK
should run correctly with this release. Classes that are compiled with this release
are not guaranteed to work on previous releases.

The 32-bit Windows edition of IBM SDK, Java Technology Edition, Version 6 is
built with Microsoft Visual Studio .NET 2003.

For information about compatibility issues between releases, see the Oracle Web
site at:

http://www.oracle.com/technetwork/java/javase/compatibility-137541.html

http://www.oracle.com/technetwork/java/javase/compatibility-137462.html

http://www.oracle.com/technetwork/java/javase/compatibility-j2se1-141394.html

http://www.oracle.com/technetwork/java/javase/compatibility-135119.html

If you are using the SDK as part of another product (for example, IBM WebSphere®

Application Server), and you upgrade from a previous level of the SDK, perhaps
v5.0, serialized classes might not be compatible. However, classes are compatible
between service refreshes.

Migrating from earlier IBM SDK or JREs
From Version 5.0, the IBM Runtime Environment for Windows contains new
versions of the IBM Virtual Machine for Java and the Just-In-Time (JIT) compiler.

If you are migrating from an older IBM Runtime Environment, note that:
v The XL TXE-J compiler replaces the XSLT4J interpreter as the default XSLT

processor. If you are migrating applications from older versions of Java, see
“Migrating to the XL-TXE-J” on page 25.

© Copyright IBM Corp. 2003, 2016 1

http://www.oracle.com/technetwork/java/javase/compatibility-137541.html
http://www.oracle.com/technetwork/java/javase/compatibility-137462.html
http://www.oracle.com/technetwork/java/javase/compatibility-j2se1-141394.html
http://www.oracle.com/technetwork/java/javase/compatibility-135119.html

v The JVM dynamic link library jvm.dll is now stored in jre\bin\j9vm and
jre\bin\classic.

v From Version 5.0 onwards, the JVM Monitoring Interface (JVMMI) is no longer
available. You must rewrite JVMMI applications to use the JVM Tool Interface
(JVMTI) instead. The JVMTI is not functionally the equivalent of JVMMI. For
information about JVMTI, see http://docs.oracle.com/javase/6/docs/technotes/
guides/jvmti/ and the Diagnostics Guide.

v From Version 5.0 onwards, the implementation of JNI conforms to the JNI
specification, but differs from the Version 1.4.2 implementation. It returns copies
of objects rather than pinning the objects. This difference can expose errors in
JNI application code. For information about debugging JNI code, see
-Xcheck:jni in “JVM command-line options” on page 83.

v From Version 5.0 onwards, the format and content of garbage collector verbose
logs obtained using -verbose:gc have changed. The data is now formatted as
XML. The data content reflects the changes to the implementation of garbage
collection in the JVM, and most of the statistics that are output have changed.
You must change any programs that process the verbose GC output so that they
will work with the new format and data. See the Diagnostics Guide for an
example of the new verbose GC data.

v SDK 1.4 versions of the IBM JRE included JVM specific classes in a file called
core.jar. From Version 5.0 onwards, these are included in a file called vm.jar.

v From Version 6, JVM classes are held in multiple JAR files in the jre\lib
directory. This replaces the single rt.jar and core.jar from earlier releases.

v For additional industry compatibility information, see Oracle's Java 6
Compatibility Documentation: http://www.oracle.com/technetwork/java/
javase/compatibility-137541.html

v For additional deprecated API information, see Oracle's Java 6 Deprecated API
List: http://docs.oracle.com/javase/6/docs/api/deprecated-list.html

v Tracing class dependencies, started using -verbose:Xclassdep, is not supported.
If you specify -verbose:Xclassdep, the JVM will issue an error message and will
not start.

v The JVM detects the operating system locale and sets the language preferences
accordingly. For example, if the locale is set to fr_FR, JVM messages will be
printed in French. To avoid seeing JVM messages in the language of the detected
locale, remove the file $SDK/jre/bin/java_xx.properties where xx is the locale,
such as fr, and the JVM will print messages in English.

v The currency symbol code for Zambia is now corrected to the value “ZMW”.

Many new features and capabilities, which might present planning considerations,
can be found here: Summary of changes.

Supported environments
This release is supported on certain hardware platforms and operating systems,
and is tested on specific virtualization environments.

Hardware platform

The 32-bit release for Windows runs on hardware that supports the Intel 32-bit
architecture.

2 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

|

http://docs.oracle.com/javase/6/docs/technotes/guides/jvmti/
http://docs.oracle.com/javase/6/docs/technotes/guides/jvmti/
http://www.oracle.com/technetwork/java/javase/compatibility-137541.html
http://www.oracle.com/technetwork/java/javase/compatibility-137541.html
http://docs.oracle.com/javase/6/docs/api/deprecated-list.html

Operating system

The following table shows the latest operating system level tested for each
platform architecture. The table indicates whether support for an operating system
release was included at the “general availability” (GA) date for the release, or at a
later date in a service refresh (SR) or fix pack (FP):

Table 1. Supported Operating Systems

Operating system Release supported

Windows 2000 SP4 GA

Windows XP GA

Windows Vista GA

Windows 7 SR6

Windows 8 SR12

Windows 10 SR16 FP7

Windows Server 2003 GA

Windows Server 2003 R2 SR1

Windows Server 2008 SR1

Windows Server 2012 SR12

Windows Server 2012 R2 SR15

Note: Windows 2000 SP4 is supported by Microsoft only under an extended
support contract. IPV6 is not supported.

Virtualization software

For information about the virtualization software tested, see “Support for
virtualization software” on page 121.

Chapter 1. Overview 3

4 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

Chapter 2. Contents of the SDK and Runtime Environment

The SDK contains several development tools and a Java Runtime Environment
(JRE). This section describes the contents of the SDK tools and the Runtime
Environment.

Applications written entirely in Java must have no dependencies on the IBM SDK's
directory structure (or files in those directories). Any dependency on the SDK's
directory structure (or the files in those directories) might result in application
portability problems. Java Native Interface (JNI) applications will have some minor
dependencies.

The demo files, and the accompanying license and copyright files are the only
documentation included in this SDK for Windows. You can view Oracle's software
documentation by visiting the Oracle Web site: http://www.oracle.com/
technetwork/java/javase/documentation/index.html.

Contents of the Runtime Environment
A list of classes, tools, and other files that you can use with the standard Runtime
Environment.
v Core Classes - These classes are the compiled class files for the platform and

must remain compressed for the compiler and interpreter to access them. Do not
modify these classes; instead, create subclasses and override where you need to.

v Trusted root certificates from certificate signing authorities - These certificates are
used to validate the identity of signed material. The IBM Runtime Environment
for Java contains an expired GTE CyberTrust Certificate for compatibility
reasons. This certificate might be removed for later versions of the SDK. See
“Expired GTE Cybertrust Certificate” on page 118 for more information.

v JRE tools - The following tools are part of the Runtime Environment and are in
the C:\Program Files\IBM\Java60\jre\bin directory unless otherwise specified.

ikeycmd.exe (iKeyman command-line utility)
Allows you to manage keys, certificates, and certificate requests from the
command line. For more information see the accompanying Security
documentation, which includes the iKeyman User Guide.

ikeyman.exe (iKeyman GUI utility)
Allows you to manage keys, certificates, and certificate requests. For more
information see the accompanying Security documentation, which includes
the iKeyman User Guide. There is also a command-line version of this utility.

jaaslogon.exe
A Windows service that enables JAAS Active Login applications to change
their effective user at run time using the JAAS Active Login API.

java.exe (Java Interpreter)
Runs Java classes. The Java Interpreter runs programs that are written in the
Java programming language.

javacpl.exe (Java Control Panel)
Configures your Runtime Environment.

© Copyright IBM Corp. 2003, 2016 5

http://www.oracle.com/technetwork/java/javase/documentation/index.html
http://www.oracle.com/technetwork/java/javase/documentation/index.html

javaw.exe (Java Interpreter)
Runs Java classes in the same way as the java command does, but does not
use a console window.

javaws.exe (Java Web Start)
Enables the deployment and automatic maintenance of Java applications. For
more information, see “Running Web Start” on page 51.

jextract.exe (Dump extractor)
Converts a system-produced dump into a common format that can be used
by jdmpview. For more information, see jdmpview.

keytool.exe (Key and Certificate Management Tool)
Manages a keystore (database) of private keys and their associated X.509
certificate chains that authenticate the corresponding public keys.

kinit.exe
Obtains and caches Kerberos ticket-granting tickets.

klist.exe
Displays entries in the local credentials cache and key table.

ktab.exe
Manages the principal names and service keys stored in a local key table.

pack200.exe
Transforms a JAR file into a compressed pack200 file using the Java gzip
compressor.

policytool.exe (Policy File Creation and Management Tool)
Creates and modifies the external policy configuration files that define your
installation's Java security policy.

rmid.exe (RMI activation system daemon)
Starts the activation system daemon so that objects can be registered and
activated in a Java virtual machine (JVM).

rmiregistry.exe (Java remote object registry)
Creates and starts a remote object registry on the specified port of the
current host.

tnameserv.exe (Common Object Request Broker Architecture (CORBA)
transient naming service)

Starts the CORBA transient naming service.

unpack200.exe
Transforms a packed file produced by pack200 into a JAR file.

Contents of the SDK
A list of tools and reference information that is included with the standard SDK.

The following tools are part of the SDK and are located in the C:\Program
Files\IBM\Java60\bin directory:

appletviewer.exe (Java Applet Viewer)
Tests and runs applets outside a Web browser.

apt.exe (Annotation Processing Tool)
Finds and executes annotation processors based on the annotations present
in the set of specified source files being examined.

6 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

extcheck.exe (Extcheck utility)
Detects version conflicts between a target jar file and currently-installed
extension jar files.

HtmlConverter.exe (Java Plug-in HTML Converter)
Converts an HTML page that contains applets to a format that can use the
Java Plug-in.

idlj.exe (IDL to Java Compiler)
Generates Java bindings from a given IDL file.

jar.exe (Java Archive Tool)
Combines multiple files into a single Java Archive (JAR) file.

jarsigner.exe (JAR Signing and Verification Tool)
Generates signatures for JAR files and verifies the signatures of signed JAR
files.

java.exe (Java Interpreter)
Runs Java classes. The Java Interpreter runs programs that are written in
the Java programming language.

java-rmi.exe (HTTP-to-CGI request forward tool)
Accepts RMI-over-HTTP requests and forwards them to an RMI server
listening on any port.

javac.exe (Java Compiler)
Compiles programs that are written in the Java programming language
into bytecodes (compiled Java code).

javadoc.exe (Java Documentation Generator)
Generates HTML pages of API documentation from Java source files.

javah.exe (C Header and Stub File Generator)
Enables you to associate native methods with code written in the Java
programming language.

javap.exe (Class File Disassembler)
Disassembles compiled files and can print a representation of the
bytecodes.

javaw.exe (Java Interpreter)
Runs Java classes in the same way as the java command does, but does
not use a console window.

javaws.exe (Java Web Start)
Enables the deployment and automatic maintenance of Java applications.
For more information, see “Running Web Start” on page 51.

jconsole.exe (JConsole Monitoring and Management Tool)
Monitors local and remote JVMs using a GUI. JMX-compliant.

jdb.exe (Java Debugger)
Helps debug your Java programs.

jdmpview.exe (Cross-platform dump formatter)
Analyzes dumps. For more information, see "Using system dumps and the
dump viewer" in the diagnostic guide.

keytool.exe (Key and Certificate Management Tool)
Manages a keystore (database) of private keys and their associated X.509
certificate chains that authenticate the corresponding public keys.

Chapter 2. Contents of the SDK and Runtime Environment 7

native2ascii.exe (Native-To-ASCII Converter)
Converts a native encoding file to an ASCII file that contains characters
encoded in either Latin-1 or Unicode, or both.

packager.exe (JavaBean to ActiveX packager)
Packages a JavaBean in a jar file for use as an ActiveX control.

policytool.exe (Policy File Creation and Management Tool)
Creates and modifies the external policy configuration files that define
your installation's Java security policy.

rmic.exe (Java Remote Method Invocation (RMI) Stub Converter)
Generates stubs, skeletons, and ties for remote objects. Includes RMI over
Internet Inter-ORB Protocol (RMI-IIOP) support.

rmid.exe (RMI activation system daemon)
Starts the activation system daemon so that objects can be registered and
activated in a Java virtual machine (JVM).

rmiregistry.exe (Java remote object registry)
Creates and starts a remote object registry on the specified port of the
current host.

schemagen.exe
Creates a schema file for each namespace referenced in your Java classes.

serialver.exe (Serial Version Command)
Returns the serialVersionUID for one or more classes in a format that is
suitable for copying into an evolving class.

tnameserv.exe (Common Object Request Broker Architecture (CORBA)
transient naming service)

Starts the CORBA transient naming service.

wsgen.exe
Generates JAX-WS portable artifacts used in JAX-WS Web services.

wsimport.exe
Generates JAX-WS portable artifacts from a Web Services Description
Language (WSDL) file.

xjc.exe
Compiles XML Schema files.

Include Files
C headers for JNI programs.

copyright
The copyright notice for the SDK for Windows software.

License

The License file, C:\Program Files\IBM\Java60\docs\content\<locale>\
license_<locale>.txt, contains the license agreement for the SDK for
Windows software (where <locale> is the name of your locale, for example en).
To view or print the license agreement, open the file in a Web browser.

8 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

Chapter 3. Installing and configuring the SDK and Runtime
Environment

The SDK is installed as part of an IBM product. Configure the SDK using
environment variables, command-line options, and properties files.

Installing and configuring the SDK and Runtime Environment
The IBM SDK, Java Technology Edition, Version 6, for all supported 32-bit
Windows architectures is available only as part of an IBM product.

For more information about obtaining, installing and performing initial
configuration of the IBM SDK, Java Technology Edition, Version 6, for all
supported 32-bit Windows architectures, please contact your IBM support
representative.

Enabling the IBM Accessibility Bridge
The IBM Accessibility Bridge is installed but disabled by default. To enable the
IBM Accessibility Bridge, uncomment the assistive_technologies entry in the
Accessibility.properties file.

About this task

The Accessibility.properties file is in the jre/lib directory. Delete the # from
the beginning of the following line:
#assistive_technologies=JawBridge

This Web site tells you more about the Accessibility Utilities:

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-140174.html

Disabling Java Accessibility support
You can disable Java Accessibility support to improve the JVM loading
performance of Java applications that do not provide Java assistive technology
support, especially over network links. To disable Java Accessibility support, set
the JAVA_ASSISTIVE environment variable to OFF.

About this task

An assistive technology, such as JawBridge, is not available if this environment
variable is set to OFF, even if the technology is enabled in the
Accessibility.properties file.

Information for European language users
In Windows, a process has two code pages: the ANSI (or Windows) code page and
the OEM (or DOS) code page. The javaw command always uses the ANSI code
page unless the console.encoding system property is set.

© Copyright IBM Corp. 2003, 2016 9

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-140174.html

The command window typically uses the OEM code page. Java console output
uses the code page of the command window from which Java is started. However,
the javaw command always uses the ANSI code page. You specify the code page to
use for console output with the -Dconsole.encoding option on the java or javaw
launcher. For example, -Dconsole.encoding=Cp1252 causes all console output to be
in the Windows ANSI Latin1 code page (1252).

Setting the path
If you alter the PATH environment variable, you will override any existing Java
launchers in your path.

About this task

The PATH environment variable enables Windows to find programs and utilities,
such as javac, java, and javadoc tool, from any current directory. To display the
current value of your PATH, type the following command at a command prompt:
echo
%PATH%

To add the Java launchers to your path:
1. If the SDK or Runtime Environment was installed in C:\Program

Files\IBM\Java60\ add the following directories to the PATH environment
variable:

C:\Program Files\IBM\Java60\bin (SDK only)
C:\Program Files\IBM\Java60\jre\bin (SDK and Runtime Environment)

2. Close and reopen any command prompt windows to activate the new PATH
environment variable.

Results

After setting the path, you can run a tool by typing its name at a command
prompt from any directory. For example, to compile the file Myfile.Java, at a
command prompt, type:
javac Myfile.Java

Setting the class path
The class path tells the SDK tools, such as java, javac, and the javadoc tool, where
to find the Java class libraries.

About this task

You should set the class path explicitly only if:
v You require a different library or class file, such as one that you develop, and it

is not in the current directory.
v You change the location of the bin and lib directories and they no longer have

the same parent directory.
v You plan to develop or run applications using different runtime environments

on the same system.

To display the current value of your CLASSPATH environment variable, type the
following command at a command prompt:

echo %CLASSPATH%

10 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

If you develop and run applications that use different runtime environments,
including other versions that you have installed separately, you must set the
CLASSPATH and PATH explicitly for each application. If you run multiple applications
simultaneously and use different runtime environments, each application must run
in its own command prompt.

Updating your SDK or JRE for Daylight Saving Time changes
You can apply recent changes to Daylight Saving Time by using the IBM Time
Zone Update Utility for Java (JTZU).

About this task

Many countries around the world use a Daylight Saving Time (DST) convention.
Typically, clocks move forward by 1 hour during the summer months to create
more daylight hours during the afternoon and less during the morning. This
practice has many implications, including the need to adjust system clocks in
computer systems. Occasionally, countries change their DST start and end dates.
These changes can affect the date and time functions in applications because the
original start and end dates are programmed into the operating system and in Java
software. To avoid this problem, you must update operating systems and Java
installations with the new DST information.

The Olson time zone database is an external resource that compiles information
about the time zones around the world. This database establishes standard names
for time zones, such as "America/New_York", and provides regular updates to
time zone information that can be used as reference data. To ensure that IBM
developer kits and Runtime Environments contain up to date DST information,
IBM incorporates the latest Olson time zone level into every updated release. To
find out which Olson time zone level is included for a particular SDK or Runtime
level, see https://www.ibm.com/developerworks/java/jdk/dst/olson_table.html.

If a DST change has been introduced since the last IBM update of the SDK or
Runtime Environment, you can use JTZU to directly update your Java installation.
You can also use this tool to update your installation if you are unable to move
straight to the latest SDK or Runtime level. JTZU is available from IBM
developerWorks® at the following link: https://www.ibm.com/developerworks/
java/jdk/dst/jtzu.html.

Results

After updating your Java installation with any recent DST changes, your
application can handle time and date calculations correctly.

Chapter 3. Installing and configuring the SDK and Runtime Environment 11

https://www.ibm.com/developerworks/java/jdk/dst/olson_table.html
https://www.ibm.com/developerworks/java/jdk/dst/jtzu.html
https://www.ibm.com/developerworks/java/jdk/dst/jtzu.html

12 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

Chapter 4. Running Java applications

Java applications can be started using the java launcher or through JNI. Settings
are passed to a Java application using command-line arguments, environment
variables, and properties files.

The java and javaw commands
An overview of the java and javaw commands.

Purpose

The java and javaw tools start a Java application by starting a Java Runtime
Environment and loading a specified class.

The javaw command is identical to java, except that javaw has no associated
console window. Use javaw when you do not want a command prompt window to
be displayed. The javaw launcher displays a window with error information if it
fails.

Usage

The JVM searches for the initial class (and other classes that are used) in three sets
of locations: the bootstrap class path, the installed extensions, and the user class
path. The arguments that you specify after the class name or .jar file name are
passed to the main function.

The java and javaw commands have the following syntax:
java [options] <class> [arguments ...]
java [options] -jar <file.jar> [arguments ...]
javaw [options] <class> [arguments ...]
javaw [options] -jar <file.jar> [arguments ...]

Parameters

[options]
Command-line options to be passed to the runtime environment.

<class>
Startup class. The class must contain a main() method.

<file.jar>
Name of the .jar file to start. It is used only with the -jar option. The named
.jar file must contain class and resource files for the application, with the
startup class indicated by the Main-Class manifest header.

[arguments ...]
Command-line arguments to be passed to the main() function of the startup
class.

Obtaining version information
You obtain the IBM build and version number for your Java installation by using
the -version or -fullversion options. You can also obtain version information for
all jar files on the class path by using the -Xjarversion option.

© Copyright IBM Corp. 2003, 2016 13

Procedure
1. Open a command prompt.
2. Type the following command:

java -version

You will see information similar to:
java version "1.6.0"
Java(TM) SE Runtime Environment (build pwi3260sr10-20111027_02(SR10))
IBM J9 VM (build 2.4, JRE 1.6.0 IBM J9 2.4 Windows 7 x86-32 jvmwi3260sr10-20111026_93491 (JIT enabled,
AOT enabled)
J9VM - 20111026_093491
JIT - r9_20111021_21134
GC - 20110519_AA)
JCL - 20111025_01

The output provides the following information:
v The first line indicates the Java standard edition class library level.
v The second line includes information about the build level of the runtime

environment. Service refresh (SR), fix pack (FP), and APAR numbers are
appended to the build string. In the example, the installed level is service
refresh 10.

v The third line indicates the build level of the IBM J9 virtual machine.
v Subsequent lines provide detailed information about the levels of IBM

components that make up the runtime environment.

Exact build dates and versions will change.
3. To obtain only the build information for the runtime environment, type the

following command:
java -fullversion

You will see information similar to:
java full version "JRE 1.6.0 IBM Windows 32 build pwi3260sr11-20120412_01 (SR11)"

What to do next

You can also list the version information for all available jar files on the class path,
the boot class path, and in the extensions directory. Type the following command:
java -Xjarversion

You will see information similar to:
...
C:\Program Files\IBM\Java60\jre\lib\ext\ibmpkcs11impl.jar VERSION: 1.0 build_20070125
C:\Program Files\IBM\Java60\jre\lib\ext\dtfjview.jar
C:\Program Files\IBM\Java60\jre\lib\ext\xmlencfw.jar VERSION: 1.00, 20061011 LEVEL: -20061011

...

The information available varies for each jar file and is taken from the
Implementation-Version and Build-Level properties in the manifest of the jar file.

To query the Java version information programmatically, see “Determining which
JVM version your application is running on” on page 34.

Specifying Java options and system properties
You can specify Java options and system properties directly on the command line.
You can also use an options file or an environment variable.

14 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

|
|

About this task

The sequence of the Java options on the command line defines which options take
precedence during startup. Rightmost options have precedence over leftmost
options. In the following example, the -Xjit option takes precedence:
java -Xint -Xjit myClass

Use one of more of the options that are shown in the procedure to customize your
runtime environment.

Procedure
1. Specify options or system properties on the command line. For example:

java -Dmysysprop1=tcpip -Dmysysprop2=wait -Xdisablejavadump MyJavaClass

2. Create an environment variable that is called IBM_JAVA_OPTIONS containing the
options. For example:
set IBM_JAVA_OPTIONS="-Dmysysprop1=tcpip -Dmysysprop2=wait
-Xdisablejavadump"

3. Create a file that contains the options, and specify that file on the command
line or in the IBM_JAVA_OPTIONS environment variable by using the
-Xoptionsfile parameter. For more information about constructing this file, see
“-Xoptionsfile” on page 89.

Standard options
The definitions for the standard options.

See “JVM command-line options” on page 83 for information about nonstandard
(-X) options.

-agentlib:<libname>[=<options>]
Loads a native agent library <libname>; for example -agentlib:hprof. For more
information, specify -agentlib:jdwp=help and -agentlib:hprof=help on the
command line.

-agentpath:libname[=<options>]
Loads a native agent library by full path name.

-cp <directories and .zip or .jar files separated by ;>
Sets the search path for application classes and resources. If -classpath and
-cp are not used and the CLASSPATH environment variable is not set, the user
class path is, by default, the current directory (.).

-classpath <directories and .zip or .jar files separated by ;>
Sets the search path for application classes and resources. If -classpath and
-cp are not used and the CLASSPATH environment variable is not set, the user
class path is, by default, the current directory (.).

-D<property name>=<value>
Sets a system property.

-help or -?
Prints a usage message.

-javaagent:<jarpath>[=<options>]
Load a Java programming language agent. For more information, see the
java.lang.instrument API documentation.

-jre-restrict-search
Include user private JREs in the version search.

Chapter 4. Running Java applications 15

-no-jre-restrict-search
Exclude user private JREs in the version search.

-showversion
Prints product version and continues.

-verbose:<option>[,<option>...]
Enables verbose output. Separate multiple options using commas. The
available options are:

class
Writes an entry to stderr for each class that is loaded.

gc Writes verbose garbage collection information to stderr. Use
-Xverbosegclog (see “Garbage Collector command-line options” on page
101 for more information) to control the output. See Verbose garbage
collection logging for more information.

jni
Writes information to stderr describing the JNI services called by the
application and JVM.

sizes
Writes information to stderr describing the active memory usage settings.

stack
Writes information to stderr describing the Java and C stack usage for each
thread.

-version
Prints product version.

-version:<value>
Requires the specified version to run, for example “1.5”.

-X Prints help on nonstandard options.

Globalization of the java command
The java and javaw launchers accept arguments and class names containing any
character that is in the character set of the current locale. You can also specify any
Unicode character in the class name and arguments by using Java escape
sequences.

To do this, use the -Xargencoding command-line option.

-Xargencoding
Use argument encoding. To specify a Unicode character, use escape sequences
in the form \u####, where # is a hexadecimal digit (0 to 9, A to F).

-Xargencoding:utf8
Use UTF8 encoding.

-Xargencoding:latin
Use ISO8859_1 encoding.

For example, to specify a class called HelloWorld using Unicode encoding for both
capital letters, use this command:
java -Xargencoding ’\u0048ello\u0057orld’

The java and javaw commands provide translated messages. These messages differ
based on the locale in which Java is running. The detailed error descriptions and
other debug information that is returned by java is in English.

16 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

Executing a Java file automatically
To set a Java class or jar file to start automatically from the Windows explorer, use
the Tools > Folder Options > File Type option of Windows Explorer.

About this task

Alternatively, at a command prompt type:
assoc .class=javaclass
ftype javaclass= install_dir\jre\bin\java.exe’’%l’’%*’

Note: The %l is the number 1 and not the letter l.

Running Java applications with native assistive technologies
Oracle provides the Java Access Bridge to give native Windows assistive
technologies, such as screen readers, access to the Java Accessibility support in a
Java application. These native Windows assistive technologies must support calls
to the Java Access Bridge.

The Oracle Java Access Bridge includes an installer, which places five files in the
correct directories: access-bridge.jar, jaccess.jar, accessibility.properties,
JavaAccessBridge.dll and WindowsAccessBridge.dll. IBM provides a copy of
jaccess.jar in the appropriate directory for use with JawBridge.

If you have already enabled JawBridge, which allows the Windows 2000 Magnifier
to function with Swing applications, and you want to use it at the same time as the
Oracle Java Access Bridge, edit the line in the accessibility.properties file to
read:

assistive_technologies=com.sun.java.accessibility.AccessBridge,JawBridge

Comment out the line by inserting a leading # to deactivate both bridges.

For information about downloading the Oracle Java Access Bridge, see
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-140174.html.

The Just-In-Time (JIT) compiler
The IBM Just-In-Time (JIT) compiler dynamically generates machine code for
frequently used bytecode sequences in Java applications and applets during their
execution. The JIT compiler delivers new optimizations as a result of compiler
research, improves optimizations implemented in previous versions of the JIT, and
provides better hardware exploitation.

The JIT is included in both the IBM SDK and Runtime Environment, which is
enabled by default in user applications and SDK tools. Typically, you do not start
the JIT explicitly; the compilation of Java bytecode to machine code occurs
transparently. You can disable the JIT to help isolate a problem. If a problem occurs
when executing a Java application or an applet, you can disable the JIT to help
isolate the problem. Disabling the JIT is a temporary measure only; the JIT is
required to optimize performance.

For more information about the JIT, see .

Chapter 4. Running Java applications 17

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-140174.html

Disabling the JIT
The JIT can be disabled in a number of different ways. Both command-line options
override the JAVA_COMPILER environment variable.

About this task

Turning off the JIT is a temporary measure that can help isolate problems when
debugging Java applications.

Procedure
v Set the JAVA_COMPILER environment variable to NONE or the empty string before

running the java application. At the command prompt where the application is
run, type:
set JAVA_COMPILER=NONE

You can also permanently set JAVA_COMPILER by using the graphical user
interface. Open Control Panel, select System, and on the Advanced tab, select
Environment Variables.

v Use the -D option on the JVM command line to set the java.compiler property
to NONE or the empty string. Type the following command at a command
prompt:
java -Djava.compiler=NONE <class>

v Use the -Xint option on the JVM command line. Type the following command
at a command prompt:
java -Xint <class>

Enabling the JIT
The JIT is enabled by default. You can explicitly enable the JIT in a number of
different ways. Both command-line options override the JAVA_COMPILER
environment variable.

Procedure
v Set the JAVA_COMPILER environment variable to jitc before running the Java

application. At the command prompt where the application is run, enter:
set JAVA_COMPILER=jitc

You can also permanently set JAVA_COMPILER by using the graphical user
interface. Open Control Panel, select System, and on the Advanced tab, select
Environment Variables. If the JAVA_COMPILER environment variable is an empty
string, the JIT remains disabled. To disable the environment variable, at the
prompt, enter:
set JAVA_COMPILER=

v Use the -D option on the JVM command line to set the java.compiler property
to jitc. At a prompt, enter:
java -Djava.compiler=jitc <class>

v Use the -Xjit option on the JVM command line. Do not specify the -Xint option
at the same time. At a prompt, enter:
java -Xjit <class>

Determining whether the JIT is enabled
You can determine the status of the JIT using the -version option.

18 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

Procedure

Run the java launcher with the -version option. Enter the following command at
a command prompt:
java -version

If the JIT is not in use, a message is displayed that includes the following text:
(JIT disabled)

If the JIT is in use, a message is displayed that includes the following text:
(JIT enabled)

What to do next

For more information about the JIT, see The JIT compiler.

Specifying a garbage collection policy
The Garbage Collector manages the memory used by Java and by applications
running in the JVM.

When the Garbage Collector receives a request for storage, unused memory in the
heap is set aside in a process called "allocation". The Garbage Collector also checks
for areas of memory that are no longer referenced, and releases them for reuse.
This is known as "collection".

The collection phase can be triggered by a memory allocation fault, which occurs
when no space remains for a storage request, or by an explicit System.gc() call.

Garbage collection can significantly affect application performance, so the IBM
virtual machine provides various methods of optimizing the way garbage
collection is carried out, potentially reducing the effect on your application.

For more detailed information about garbage collection, see .

Garbage collection options
The -Xgcpolicy options control the behavior of the Garbage Collector. They make
trade-offs between throughput of the application and overall system, and the pause
times that are caused by garbage collection.

The format of the option is as follows:
-Xgcpolicy:<value>

The following values are available:

gencon
The generational concurrent (gencon) policy uses a concurrent mark phase
combined with generational garbage collection to help minimize the time that
is spent in any garbage collection pause. This policy is particularly useful for
applications with many short-lived objects, such as transactional applications.
Pause times can be significantly shorter than with the optthruput policy, while
still producing good throughput. Heap fragmentation is also reduced.

optavgpause
The "optimize for pause time" (optavgpause) policy uses concurrent mark and
concurrent sweep phases. Pause times are shorter than with optthruput, but

Chapter 4. Running Java applications 19

application throughput is reduced because some garbage collection work is
taking place while the application is running. Consider using this policy if you
have a large heap size (available on 64-bit platforms), because this policy limits
the effect of increasing heap size on the length of the garbage collection pause.
However, if your application uses many short-lived objects, the gencon policy
might produce better performance.

optthruput
The "optimize for throughput" (optthruput) policy (default) disables the
concurrent mark phase. The application stops during global garbage collection,
so long pauses can occur. This configuration is typically used for large-heap
applications when high application throughput, rather than short garbage
collection pauses, is the main performance goal. If your application cannot
tolerate long garbage collection pauses, consider using another policy, such as
gencon.

Increased heap sizes using a split heap
Many Java application workloads depend on the Java heap size. The IBM SDK for
Java can use a split heap to work around restrictions in the 32-bit Windows
memory space and provide a larger maximum heap size.

By default, the IBM SDK for Java uses a contiguous Java heap to store Java objects.
Using the -Xgc:splitheap command-line option splits the heap into multiple
contiguous memory areas. The use of two areas can increase the maximum
allocatable heap size.

The -Xgc:splitheap option also forces the use of the “gencon” (generational
concurrent) garbage collection policy.

Use -Xgc:splitheap for applications that must run on the 32-bit JVM (because of
32-bit JNI libraries, a 32-bit operating system, or 32-bit hardware) but need large
Java heaps.

-Xgc:splitheap is not recommended if your application works in the any of the
following ways:
v Performs poorly under the gencon garbage collection policy.
v Loads a very large number of classes.
v Uses large amounts of native system memory in JNI libraries; the increased size

Java heap might reserve too much of the application's address space.

For more detailed information about a split Java heap, see Split heap.

Pause time
If an object cannot be created from the available space in the heap, the Garbage
Collector attempts to tidy the heap. The intention is that subsequent allocation
requests can be satisfied quickly.

The Garbage Collector tries to returning the heap to a state in which the immediate
and subsequent space requests are successful. The Garbage Collector identifies
unreferenced “garbage” objects, and deletes them. This work takes place in a
garbage collection cycle. These cycles might introduce occasional, unexpected
pauses in the execution of application code. As applications grow in size and
complexity, and heaps become correspondingly larger, the garbage collection pause

20 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

time tends to grow in size and significance. Pause time can vary from a few
milliseconds to many seconds. The actual time depends on the size of the heap,
and the quantity of garbage.

Pause time reduction
The JVM uses two techniques to reduce pause times: concurrent garbage collection
and generational garbage collection.

The -Xgcpolicy:optavgpause command-line option requests the use of concurrent
garbage collection (GC) to reduce significantly the time that is spent in garbage
collection pauses. Concurrent GC reduces the pause time by performing some
garbage collection activities concurrently with normal program execution to
minimize the disruption caused by the collection of the heap. The
-Xgcpolicy:optavgpause option also limits the effect of increasing the heap size on
the length of the garbage collection pause. The -Xgcpolicy:optavgpause option is
most useful for configurations that have large heaps. With the reduced pause time,
you might experience some reduction of throughput to your applications.

During concurrent GC, a significant amount of time is wasted identifying relatively
long-lasting objects that cannot then be collected. If garbage collection concentrates
on only the objects that are most likely to be recyclable, you can further reduce
pause times for some applications. Generational GC reduces pause times by
dividing the heap into two generations: the “new” and the “tenure” areas. Objects
are placed in one of these areas depending on their age. The new area is the
smaller of the two and contains new objects; the tenure is larger and contains older
objects. Objects are first allocated to the new area; if they have active references for
long enough, they are promoted to the tenure area.

Generational GC depends on most objects not lasting long. Generational GC
reduces pause times by concentrating the effort to reclaim storage on the new area
because it has the most recyclable space. Rather than occasional but lengthy pause
times to collect the entire heap, the new area is collected more frequently and, if
the new area is small enough, pause times are comparatively short. However,
generational GC has the drawback that, over time, the tenure area might become
full. To minimize the pause time when this situation occurs, use a combination of
concurrent GC and generational GC. The -Xgcpolicy:gencon option requests the
combined use of concurrent and generational GC to help minimize the time that is
spent in any garbage collection pause.

Environments with very full heaps
If the Java heap becomes nearly full, and very little garbage can be reclaimed,
requests for new objects might not be satisfied quickly because no space is
immediately available.

If the heap is operated at near-full capacity, application performance might suffer
regardless of which garbage collection options are used; and, if requests for more
heap space continue to be made, the application might receive an
OutOfMemoryError, which results in JVM termination if the exception is not
caught and handled. At this point, the JVM produces a Javadump file for use
during diagnostic procedures. In these conditions, you are recommended either to
increase the heap size by using the -Xmx option or to reduce the number of objects
in use.

For more information, see .

Chapter 4. Running Java applications 21

Euro symbol support
The IBM SDK and Runtime Environment set the Euro as the default currency for
those countries in the European Monetary Union (EMU) for dates on or after 1
January, 2002. From 1 January 2008, Cyprus and Malta also have the Euro as the
default currency.

To use the old national currency, specify –Duser.variant=PREEURO on the Java
command line.

If you are running the UK, Danish, or Swedish locales and want to use the Euro,
specify –Duser.variant=EURO on the Java command line.

Using Indian and Thai input methods
From Version 6, the Indian and Thai input methods are not available by default.
You must manually include the input method jar files in your Java extensions
path to use the Indian and Thai input methods.

About this task

In Version 5.0, the input method jar files were included in the jre\lib\ext
directory and were automatically loaded by the JVM. In Version 6, the input
method jar files are included in the jre\lib\im directory and you must manually
add them to the Java extensions path to enable Indian and Thai input methods.

Procedure
v Copy the indicim.jar and thaiim.jar files from the jre\lib\im directory to the

jre\lib\ext directory.
v Add the jre\lib\im directory to the extension directories system property. Use

the following command-line option:
java -Djava.ext.dirs=C:\Program Files\IBM\Java60\jre\lib\ext;
C:\Program Files\IBM\Java60\jre\lib\im <class>

What to do next

If the SDK or Runtime Environment was installed in a different directory, replace
C:\Program Files\IBM\Java60\ with the directory in which the SDK or Runtime
Environment was installed.

22 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

Chapter 5. Developing Java applications

The SDK contains many tools and libraries required for Java software
development.

See “Contents of the SDK” on page 6 for details of the tools available.

Using XML
The IBM SDK contains the XML4J and XL XP-J parsers, the XL TXE-J 1.0 XSLT
compiler, and the XSLT4J XSLT interpreter. These tools allow you to parse,
validate, transform, and serialize XML documents independently from any given
XML processing implementation.

Use factory finders to locate implementations of the abstract factory classes, as
described in “Selecting an XML processor” on page 24. By using factory finders,
you can select a different XML library without changing your Java code.

Available XML libraries

The IBM SDK for Java contains the following XML libraries:

XML4J 4.5

XML4J is a validating parser providing support for the following
standards:
v XML 1.0 (4th edition)
v Namespaces in XML 1.0 (2nd edition)
v XML 1.1 (2nd edition)
v Namespaces in XML 1.1 (2nd edition)
v W3C XML Schema 1.0 (2nd Edition)
v XInclude 1.0 (2nd Edition)
v OASIS XML Catalogs 1.0
v SAX 2.0.2
v DOM Level 3 Core, Load and Save
v DOM Level 2 Core, Events, Traversal and Range
v JAXP 1.4

XML4J 4.5 is based on Apache Xerces-J 2.9.0. See http://xerces.apache.org/
xerces2-j/ for more information.

XL XP-J 1.1

XL XP-J 1.1 is a high-performance non-validating parser that provides
support for StAX 1.0 (JSR 173). StAX is a bidirectional API for pull-parsing
and streaming serialization of XML 1.0 and XML 1.1 documents. See the
“XL XP-J reference information” on page 28 section for more details about
what is supported by XL XP-J 1.1.

XL TXE-J 1.0

For Version 5.0, the IBM SDK for Java included the XSLT4J compiler and
interpreter. The XSLT4J interpreter was used by default.

© Copyright IBM Corp. 2003, 2016 23

http://xerces.apache.org/xerces2-j/
http://xerces.apache.org/xerces2-j/

For Version 6 and later, the IBM SDK for Java includes XL TXE-J. XL TXE-J
includes the XSLT4J 2.7.8 interpreter and a new XSLT compiler. The new
compiler is used by default. The XSLT4J compiler is no longer included
with the IBM SDK for Java. See “Migrating to the XL-TXE-J” on page 25
for information about migrating to XL TXE-J.

XL TXE-J provides support for the following standards:
v XSLT 1.0
v XPath 1.0
v JAXP 1.4

Selecting an XML processor

XML processor selection is performed using service providers. When using a
factory finder, Java looks in the following places, in this order, to see which service
provider to use:
1. The system property with the same name as the service provider.
2. The service provider specified in a properties file.
v For XMLEventFactory, XMLInputFactory, and XMLOutputFactory only. The

value of the service provider in the file C:\Program Files\IBM\Java60\jre\
lib\stax.properties.

v For other factories. The value of the service provider in the file C:\Program
Files\IBM\Java60\jre\lib\jaxp.properties.

3. The contents of the META-INF\services\<service.provider> file.
4. The default service provider.

The following service providers control the XML processing libraries used by Java:

javax.xml.parsers.SAXParserFactory
Selects the SAX parser. By default,
org.apache.xerces.jaxp.SAXParserFactoryImpl from the XML4J library is used.

javax.xml.parsers.DocumentBuilderFactory
Selects the document builder. By default,
org.apache.xerces.jaxp.DocumentBuilderFactoryImpl from the XML4J library is
used.

javax.xml.datatype.DatatypeFactory
Selects the datatype factory. By default,
org.apache.xerces.jaxp.datatype.DatatypeFactoryImpl from the XML4J library is
used.

javax.xml.stream.XMLEventFactory
Selects the StAX event factory. By default,
com.ibm.xml.xlxp.api.stax.XMLEventFactoryImpl from the XL XP-J library is
used.

javax.xml.stream.XMLInputFactory
Selects the StAX parser. By default,
com.ibm.xml.xlxp.api.stax.XMLInputFactoryImpl from the XL XP-J library is
used.

javax.xml.stream.XMLOutputFactory
Selects the StAX serializer. By default,
com.ibm.xml.xlxp.api.stax.XMLOutputFactoryImpl from the XL XP-J library is
used.

24 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

javax.xml.transform.TransformerFactory
Selects the XSLT processor. Possible values are:

com.ibm.xtq.xslt.jaxp.compiler.TransformerFactoryImpl
Use the XL TXE-J compiler. This value is the default.

org.apache.xalan.processor.TransformerFactoryImpl
Use the XSLT4J interpreter.

javax.xml.validation.SchemaFactory:http://www.w3.org/2001/XMLSchema
Selects the schema factory for the W3C XML Schema language. By default,
org.apache.xerces.jaxp.validation.XMLSchemaFactory from the XML4J library is
used.

javax.xml.xpath.XPathFactory
Selects the XPath processor. By default,
org.apache.xpath.jaxp.XPathFactoryImpl from the XSLT4J library is used.

Migrating to the XL-TXE-J
From Version 6, the XL TXE-J compiler replaces the XSLT4J interpreter as the
default XSLT processor. If you are migrating applications from older versions of
Java, follow these steps to prepare your application for the new library.

About this task

The XL TXE-J compiler is faster than the XSLT4J interpreter when you are applying
the same transformation more than once. If you perform each individual
transformation only once, the XL TXE-J compiler is slower than the XSLT4J
interpreter because compilation and optimization reduce performance.

To continue using the XSLT4J interpreter as your XSLT processor, set the
javax.xml.transform.TransformerFactory service provider to
org.apache.xalan.processor.TransformerFactoryImpl.

To migrate to the XL-TXE-J compiler, follow the instructions in this task.

Procedure
1. Use com.ibm.xtq.xslt.jaxp.compiler.TransformerFactoryImpl when setting the

javax.xml.transform.TransformerFactory service provider.
2. Regenerate class files generated by the XSLT4J compiler. XL TXE-J cannot

execute class files generated by the XSLT4J compiler.
3. Some methods generated by the compiler might exceed the JVM method size

limit, in which case the compiler attempts to split these methods into smaller
methods.
v If the compiler splits the method successfully, you receive the following

warning:
Some generated functions exceeded the JVM method size limit and were
automatically split into smaller functions. You might get better
performance by manually splitting very large templates into smaller
templates, by using the 'splitlimit' option to the Process or Compile
command, or by setting the 'http://www.ibm.com/xmlns/prod/xltxe-j/
split-limit' transformer factory attribute.You can use the compiled
classes, but you might get better performance by controlling the split limit
manually.

v If the compiler does not split the method successfully, you receive one of the
following exceptions:

Chapter 5. Developing Java applications 25

com.ibm.xtq.bcel.generic.ClassGenException: Branch target offset too
large for short or
bytecode array size > 65535 at offset=#####Try setting the split limit
manually, or decreasing the split limit.

To set the split limit, use the -SPLITLIMIT option when using the Process or
Compile commands, or the http://www.ibm.com/xmlns/prod/xltxe-j/split-
limit transformer factory attribute when using the transformer factory. The
split limit can be between 100 and 2000. When setting the split limit manually,
use the highest split limit possible for best performance.

4. XL TXE-J might need more memory than the XSLT4J compiler. If you are
running out of memory or performance seems slow, increase the size of the
heap using the -Xmx option.

5. Migrate your application to use the new attribute keys. The old transformer
factory attribute keys are deprecated. The old names are accepted with a
warning.

Table 2. Changes to attribute keys from the XSL4J compiler to the XL TXE-J compiler

XSL4J compiler attribute XL TXE-J compiler attribute

translet-name http://www.ibm.com/xmlns/prod/xltxe-j/translet-name

destination-directory http://www.ibm.com/xmlns/prod/xltxe-j/destination-
directory

package-name http://www.ibm.com/xmlns/prod/xltxe-j/package-name

jar-name http://www.ibm.com/xmlns/prod/xltxe-j/jar-name

generate-translet http://www.ibm.com/xmlns/prod/xltxe-j/generate-translet

auto-translet http://www.ibm.com/xmlns/prod/xltxe-j/auto-translet

use-classpath http://www.ibm.com/xmlns/prod/xltxe-j/use-classpath

debug http://www.ibm.com/xmlns/prod/xltxe-j/debug

indent-number http://www.ibm.com/xmlns/prod/xltxe-j/indent-number

enable-inlining Obsolete in new compiler

6. Optional: For best performance, ensure that you are not recompiling XSLT
transformations that can be reused. Use one of the following methods to reuse
compiled transformations:
v If your stylesheet does not change at run time, compile the stylesheet as part

of your build process and put the compiled classes on your classpath. Use
the org.apache.xalan.xsltc.cmdline.Compile command to compile the
stylesheet and set the http://www.ibm.com/xmlns/prod/xltxe-j/use-
classpath transformer factory attribute to true to load the classes from the
classpath.

v If your application will use the same stylesheet during multiple runs, set the
http://www.ibm.com/xmlns/prod/xltxe-j/auto-translet transformer factory
attribute to true to automatically save the compiled stylesheet to disk for
reuse. The compiler will use a compiled stylesheet if it is available, and
compile the stylesheet if it is not available or is out-of-date. Use the
http://www.ibm.com/xmlns/prod/xltxe-j/destination-directory transformer
factory attribute to set the directory used to store compiled stylesheets. By
default, compiled stylesheets are stored in the same directory as the
stylesheet.

v If your application is a long-running application that reuses the same
stylesheet, use the transformer factory to compile the stylesheet and create a

26 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

Templates object. You can use the Templates object to create Transformer
objects without recompiling the stylesheet. The Transformer objects can also
be reused but are not thread-safe.

v If your application uses each stylesheet just once or a very small number of
times, or you are unable to make any of the other changes listed in this step,
you might want to continue to use the XSLT4J interpreter by setting the
javax.xml.transform.TransformerFactory service provider to
org.apache.xalan.processor.TransformerFactoryImpl.

Securing Java API for XML processing (JAXP) against
malformed input

If your application takes untrusted XML, XSD or XSL files as input, you can
enforce specific limits during JAXP processing to protect your application from
malformed data. If you specify limits, you must override the default XML parser
configuration with a custom configuration.

About this task

To protect your application from malformed data, you can enforce specific limits
during JAXP processing. These limits can be set in your jaxp.properties file, or by
specifying various system properties on the command line. However, for these
limits to take effect you must also override the default XML parser configuration
with a custom configuration that allows these secure processing limits.

Procedure
1. Select the limits that you want to set for your application.
v To limit the number of entity expansions in an XML document, see

“-Djdk.xml.entityExpansionLimit” on page 77.
v To limit the maximum size of a general entity, see

“-Djdk.xml.maxGeneralEntitySizeLimit” on page 77.
v To limit the maximum size of a parameter entity, see

“-Djdk.xml.maxParameterEntitySizeLimit” on page 79.
v To limit the length of XML names in XML documents, see

“-Djdk.xml.maxXMLNameLimit” on page 79.
v To limit the total size of all entities that include general and parameter

entities, see “-Djdk.xml.totalEntitySizeLimit” on page 81.
v To define the maximum number of content model nodes that can be created

in a grammar, see “-Djdk.xml.maxOccur” on page 78.
v To control whether external entities are resolved in an XML document, see

“-Djdk.xml.resolveExternalEntities” on page 80.
2. To override the default XML parser configuration, set the custom configuration

by specifying the following system property on the command line:
-Dorg.apache.xerces.xni.parser.XMLParserConfiguration=config_file, where
config_file is org.apache.xerces.parsers.SecureProcessingConfiguration. For
more information about the full override mechanism, see http://
xerces.apache.org/xerces2-j/faq-xni.html#faq-2.

XML reference information
The XL XP-J and XL TXE-J XML libraries are new for Version 6 of the SDK. This
reference information describes the features supported by these libraries.

Chapter 5. Developing Java applications 27

|

|

|
|
|
|

|

|
|
|
|
|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|

|

http://xerces.apache.org/xerces2-j/faq-xni.html#faq-2
http://xerces.apache.org/xerces2-j/faq-xni.html#faq-2

XL XP-J reference information
XL XP-J 1.1 is a high-performance non-validating parser that provides support for
StAX 1.0 (JSR 173). StAX is a bidirectional API for pull-parsing and streaming
serialization of XML 1.0 and XML 1.1 documents.

Unsupported features

The following optional StAX features are not supported by XL XP-J:
v DTD validation when using an XMLStreamReader or XMLEventReader. The XL

XP-J parser is non-validating.
v When using an XMLStreamReader to read from a character stream

(java.io.Reader), the Location.getCharaterOffset() method always returns -1. The
Location.getCharaterOffset() returns the byte offset of a Location when using an
XMLStreamReader to read from a byte stream (java.io.InputStream).

XMLInputFactory reference

The javax.xml.stream.XMLInputFactory implementation supports the following
properties, as described in the XMLInputFactory Javadoc information:
http://docs.oracle.com/javase/6/docs/api/javax/xml/stream/
XMLInputFactory.html.

Property name Supported?

javax.xml.stream.isValidating No. The XL XP-J scanner does not support validation.

javax.xml.stream.isNamespaceAware Yes, supports true and false. For XMLStreamReaders
created from DOMSources, namespace processing
depends on the methods that were used to create the
DOM tree, and this value has no effect.

javax.xml.stream.isCoalescing Yes

javax.xml.stream.isReplacingEntityReferences Yes. For XMLStreamReaders created from DOMSources,
if entities have already been replaced in the DOM tree,
setting this parameter has no effect.

javax.xml.stream.isSupportingExternalEntities Yes

javax.xml.stream.supportDTD True is always supported. Setting the value to false
works only if the
com.ibm.xml.xlxp.support.dtd.compat.mode system
property is also set to false.

When both properties are set to false, parsers created by
the factory throw an XMLStreamException when they
encounter an entity reference that requires expansion.
This setting is useful for protecting against Denial of
Service (DoS) attacks involving entities declared in the
DTD.

Setting the value to false does not work before Service
Refresh 2.

javax.xml.stream.reporter Yes

javax.xml.stream.resolver Yes

XL XP-J also supports the optional method
createXMLStreamReader(javax.xml.transform.Source), which allows StAX readers to
be created from DOM and SAX sources.

28 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

http://docs.oracle.com/javase/6/docs/api/javax/xml/stream/XMLInputFactory.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/stream/XMLInputFactory.html

XL XP-J also supports the javax.xml.stream.isSupportingLocationCoordinates
property. If you set this property to true, XMLStreamReaders created by the factory
return accurate line, column, and character information using Location objects. If
you set this property to false, line, column, and character information is not
available. By default, this property is set to false for performance reasons.

XMLStreamReader reference

The javax.xml.stream.XMLStreamReader implementation supports the following
properties, as described in the XMLStreamReader Javadoc: http://docs.oracle.com/
javase/6/docs/api/javax/xml/stream/XMLStreamReader.html.

Property name Supported?

javax.xml.stream.entities Yes

javax.xml.stream.notations Yes

XL XP-J also supports the javax.xml.stream.isInterning property. This property
returns a boolean value indicating whether or not XML names and namespace
URIs returned by the API calls have been interned by the parser. This property is
read-only.

XMLOutputFactory reference

The javax.xml.stream.XMLOutputFactory implementation supports the following
properties, as described in the XMLOutputFactory Javadoc: http://
docs.oracle.com/javase/6/docs/api/javax/xml/stream/XMLOutputFactory.html.

Property name Supported?

javax.xml.stream.isRepairingNamespaces Yes

XL XP-J also supports the
javax.xml.stream.XMLOutputFactory.recycleWritersOnEndDocument property. If
you set this property to true, XMLStreamWriters created by this factory are
recycled when writeEndDocument() is called. After recycling, some
XMLStreamWriter methods, such as getNamespaceContext(), must not be called.
By default, XMLStreamWriters are recycled when close() is called. You must call
the XMLStreamWriter.close() method when you have finished with an
XMLStreamWriter, even if this property is set to true.

XMLStreamWriter reference

The javax.xml.stream.XMLStreamWriter implementation supports the following
properties, as described in the XMLStreamWriter Javadoc: http://docs.oracle.com/
javase/6/docs/api/javax/xml/stream/XMLStreamWriter.html.

Property name Supported?

javax.xml.stream.isRepairingNamespaces Yes

Properties on XMLStreamWriter objects are read-only.

XL XP-J also supports the
javax.xml.stream.XMLStreamWriter.isSetPrefixBeforeStartElement property. This
property returns a Boolean indicating whether calls to setPrefix() and

Chapter 5. Developing Java applications 29

http://docs.oracle.com/javase/6/docs/api/javax/xml/stream/XMLStreamReader.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/stream/XMLStreamReader.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/stream/XMLOutputFactory.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/stream/XMLOutputFactory.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/stream/XMLStreamWriter.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/stream/XMLStreamWriter.html

setDefaultNamespace() should occur before calls to writeStartElement() or
writeEmptyElement() to put a namespace prefix in scope for that element. XL XP-J
always returns false; calls to setPrefix() and setDefaultNamespace() should occur
after writeStartElement() or writeEmptyElement().

XL TXE-J reference information
XL TXE-J is an XSLT library containing the XSLT4J 2.7.8 interpreter and a XSLT
compiler.

Feature comparison table

Table 3. Comparison of the features in the XSLT4J interpreter, the XSLT4J compiler, and the XL TXE-J compiler.

Feature
XSLT4J interpreter
(included)

XSLT4J compiler
(not included)

XL TXE-J compiler
(included)

http://javax.xml.transform.stream.StreamSource/
feature feature

Yes Yes Yes

http://javax.xml.transform.stream.StreamResult/
feature feature

Yes Yes Yes

http://javax.xml.transform.dom.DOMSource/
feature feature

Yes Yes Yes

http://javax.xml.transform.dom.DOMResult/
feature feature

Yes Yes Yes

http://javax.xml.transform.sax.SAXSource/feature
feature

Yes Yes Yes

http://javax.xml.transform.sax.SAXResult/feature
feature

Yes Yes Yes

http://javax.xml.transform.stax.StAXSource/feature
feature

Yes No Yes

http://javax.xml.transform.stax.StAXResult/feature
feature

Yes No Yes

http://
javax.xml.transform.sax.SAXTransformerFactory/
feature feature

Yes Yes Yes

http://
javax.xml.transform.sax.SAXTransformerFactory/
feature/xmlfilter feature

Yes Yes Yes

http://javax.xml.XMLConstants/feature/secure-
processing feature

Yes Yes Yes

http://xml.apache.org/xalan/features/incremental
attribute

Yes No No

http://xml.apache.org/xalan/features/optimize
attribute

Yes No No

http://xml.apache.org/xalan/properties/source-
location attribute

Yes No No

translet-name attribute N/A Yes Yes (with new
name)

destination-directory attribute N/A Yes Yes (with new
name)

package-name attribute N/A Yes Yes (with new
name)

30 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

Table 3. Comparison of the features in the XSLT4J interpreter, the XSLT4J compiler, and the XL TXE-J
compiler. (continued)

Feature
XSLT4J interpreter
(included)

XSLT4J compiler
(not included)

XL TXE-J compiler
(included)

jar-name attribute N/A Yes Yes (with new
name)

generate-translet attribute N/A Yes Yes (with new
name)

auto-translet attribute N/A Yes Yes (with new
name)

use-classpath attribute N/A Yes Yes (with new
name)

enable-inlining attribute No Yes No (obsolete in TL
TXE-J)

indent-number attribute No Yes Yes (with new
name)

debug attribute No Yes Yes (with new
name)

Java extensions Yes Yes (abbreviated
syntax only,
xalan:component/
xalan:script
constructs not
supported)

Yes (abbreviated
syntax only,
xalan:component/
xalan:script
constructs not
supported)

JavaScript extensions Yes No No

Extension elements Yes No No

EXSLT extension functions Yes Yes (excluding
dynamic)

Yes (excluding
dynamic)

redirect extension Yes Yes (excluding
redirect:open and
redirect:close)

Yes

output extension No Yes Yes

nodeset extension Yes Yes Yes

NodeInfo extension functions Yes No No

SQL library extension Yes No No

pipeDocument extension Yes No No

evaluate extension Yes No No

tokenize extension Yes No No

XML 1.1 Yes Yes Yes

Notes
1. With the Process command, use -FLAVOR sr2sw to transform using StAX stream

processing, and -FLAVOR er2ew for StAX event processing.
2. The new compiler does not look for the

org.apache.xalan.xsltc.dom.XSLTCDTMManager service provider. Instead, if
StreamSource is used, the compiler switches to a high-performance XML parser.

3. Inlining is obsolete in XL TXE-J.
v The -XN option to the Process command is silently ignored.

Chapter 5. Developing Java applications 31

v The -n option to the Compile command is silently ignored.
v The enable-inlining transformer factory attribute is silently ignored.

4. The org.apache.xalan.xsltc.trax.SmartTransformerFactoryImpl class is no longer
supported.

Using an older version of Xerces or Xalan
If you are using an older version of Xerces (before 2.0) or Xalan (before 2.3) in the
endorsed override, you might get a NullPointerException when you start your
application. This exception occurs because these older versions do not handle the
jaxp.properties file correctly.

About this task

To avoid this situation, use one of the following workarounds:
v Upgrade to a newer version of the application that implements the latest Java

API for XML Programming (JAXP) specification (https://jaxp.dev.java.net/).
v Remove the jaxp.properties file from C:\Program Files\IBM\Java60\jre\lib.
v Uncomment the entries in the jaxp.properties file in C:\Program

Files\IBM\Java60\jre\lib.
v Set the system property for javax.xml.parsers.SAXParserFactory,

javax.xml.parsers.DocumentBuilderFactory, or
javax.xml.transform.TransformerFactory using the -D command-line option.

v Set the system property for javax.xml.parsers.SAXParserFactory,
javax.xml.parsers.DocumentBuilderFactory, or
javax.xml.transform.TransformerFactory in your application. For an example,
see the JAXP 1.4 specification.

v Explicitly set the SAX parser, Document builder, or Transformer factory using
the IBM_JAVA_OPTIONS environment variable.
set IBM_JAVA_OPTIONS=-Djavax.xml.parsers.SAXParserFactory=

org.apache.xerces.jaxp.SAXParserFactoryImpl

or
set IBM_JAVA_OPTIONS=-Djavax.xml.parsers.DocumentBuilderFactory=

org.apache.xerces.jaxp.DocumentBuilderFactoryImpl

or
set IBM_JAVA_OPTIONS=-Djavax.xml.transform.TransformerFactory=

org.apache.xalan.processor.TransformerFactoryImpl

Debugging Java applications
To debug Java programs, you can use the Java Debugger (JDB) application or other
debuggers that communicate by using the Java Platform Debugger Architecture
(JPDA) that is provided by the SDK for the operating system.

More information about problem diagnosis using Java can be found in the
Troubleshooting and support.

Java Debugger (JDB)
The Java Debugger (JDB) is included in the SDK. The debugger is started with the
jdb command; it attaches to the JVM using JPDA.

To debug a Java application:

32 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

1. Start the JVM with the following options:
java -agentlib:jdwp=transport=dt_shmem,server=y,address=<port> <class>

The JVM starts up, but suspends execution before it starts the Java application.
2. In a separate session, you can attach the debugger to the JVM:

jdb -attach <port>

The debugger will attach to the JVM, and you can now issue a range of
commands to examine and control the Java application; for example, type run
to allow the Java application to start.

For more information about JDB options, type:
jdb -help

For more information about JDB commands:
1. Type jdb
2. At the jdb prompt, type help

You can also use JDB to debug Java applications running on remote workstations.
JPDA uses a TCP/IP socket to connect to the remote JVM.
1. Start the JVM with the following options:

java -agentlib:jdwp=transport=dt_shmem,server=y,address=<port> <class>

The JVM starts up, but suspends execution before it starts the Java application.
2. Attach the debugger to the remote JVM:

jdb -connect com.sun.jdi.SocketAttach:hostname=<host>,port=<port>

The Java Virtual Machine Debugging Interface (JVMDI) is not supported in this
release. It has been replaced by the Java Virtual Machine Tool Interface (JVMTI).

For more information about JDB and JPDA and their usage, see these Web sites:
v http://www.oracle.com/technetwork/java/javase/tech/jpda-141715.html
v http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/
v http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/jdb.html

Selective debugging
Use the com.ibm.jvm.Debuggable annotation to mark classes and methods that
should be available for debugging. Use the -XselectiveDebug parameter to enable
selective debugging at run time. The JVM optimizes methods that do not need
debugging to provide better performance in a debugging environment.

About this task

Selective debugging is useful when Java is being used as a framework for
development, for example, as an IDE. The Java code for the IDE is optimized for
performance while the user code is debugged.

Procedure
1. Import the Debuggable annotation from the com.ibm.jvm package.

import com.ibm.jvm.Debuggable;

2. Decorate methods using the Debuggable annotation.

Chapter 5. Developing Java applications 33

http://www.oracle.com/technetwork/java/javase/tech/jpda-141715.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/
http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/jdb.html

@Debuggable
public int method1() {

...
}

3. Optional: You can also decorate classes using the Debuggable annotation. All
methods in the class will remain debuggable.
@Debuggable
public class Class1 {

...
}

4. Enable selective debugging at run time using the -XselectiveDebug
command-line option.

Results

Applications will run faster while being debugged because the core Java API and
any IDE code can be optimized for performance.

Determining whether your application is running on a 32-bit or 64-bit
JVM

Some Java applications must be able to determine whether they are running on a
32-bit JVM or on a 64-bit JVM. For example, if your application has a native code
library, the library must be compiled separately in 32- and 64-bit forms for
platforms that support both 32- and 64-bit modes of operation. In this case, your
application must load the correct library at run environmenttime, because it is not
possible to mix 32- and 64-bit code.

About this task

The system property com.ibm.vm.bitmode allows applications to determine the
mode in which your JVM is running. It returns the following values:
v 32 - the JVM is running in 32-bit mode
v 64 - the JVM is running in 64-bit mode

You can inspect the com.ibm.vm.bitmode property from inside your application
code using the call:
System.getProperty("com.ibm.vm.bitmode");

Determining which JVM version your application is running on
You can programmatically determine which JVM version your application is
running on by querying the java.runtime.version system property.

About this task

The system property java.runtime.version can be queried at run time to
determine the version of the JVM that is running.

Procedure

Use the following call: System.getProperty("java.runtime.version");

34 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

|

|
|

|

|
|

|

|

Results

This call returns a Java String with content similar to:
pwi3260sr11-20120412_01 (SR11)

The result of this query is similar to the command-line option java -fullversion.
For more information about finding the Java version using command-line options,
see “Obtaining version information” on page 13.

How the JVM processes signals
When a signal is raised that is of interest to the JVM, a signal handler is called.
This signal handler determines whether it has been called for a Java or non-Java
thread.

If the signal is for a Java thread, the JVM takes control of the signal handling. If an
application handler for this signal is installed and you did not specify the
-Xnosigchain command-line option, the application handler for this signal is called
after the JVM has finished processing.

If the signal is for a non-Java thread, and the application that installed the JVM
had previously installed its own handler for the signal, control is given to that
handler. Otherwise, if the signal is requested by the JVM or Java application, the
signal is ignored or the default action is taken.

Where a signal is generated externally (for example, when you enter
CTRL-BREAK), a new thread is created for the signal handler. In this case, the
JVM signal handler performs its processing and if an application handler for this
signal is installed and you did not specify the -Xnosigchain command-line option,
the application handler for this signal is called.

For exception and error signals, the JVM either:
v Handles the condition and recovers, or
v Enters a controlled shut down sequence where it:

1. Produces dumps, to describe the JVM state at the point of failure
2. Calls your application's signal handler for that signal
3. Calls any application-installed unexpected shut down hook
4. Performs the necessary JVM cleanup

For interrupt signals, the JVM also enters a controlled shut down sequence, but
this time it is treated as a normal termination that:
1. Calls your application's signal handler for that signal
2. Calls all application shut down hooks
3. Calls any application-installed exit hook
4. Performs the necessary JVM cleanup

The shut down is identical to the shut down initiated by a call to the Java method
System.exit().

Other signals that are used by the JVM are for internal control purposes and do
not cause it to stop. The only control signal of interest is SIGBREAK, which causes
a Javadump to be generated.

Chapter 5. Developing Java applications 35

|

|

|

|
|
|

Signals used by the JVM
The types of signals are Interrupts, and Controls.

Table 4 shows the signals that are used by the JVM. The signals are grouped in the
table by type or use, as follows:
Exceptions

The operating system synchronously raises an appropriate exception signal
whenever an unrecoverable condition occurs.

Errors The JVM raises a SIGABRT if it detects a condition from which it cannot
recover.

Interrupts
Interrupt signals are raised asynchronously, from outside a JVM process, to
request shut down.

Controls
Other signals that are used by the JVM for control purposes.

Table 4. Signals used by the JVM

Signal Name Signal type Description
Disabled by
-Xrs

Disabled by
-Xrs:sync

SIGINT (2) Interrupt Interactive
attention
(CTRL-C). JVM
exits normally.

Yes No

SIGTERM (15) Interrupt Termination
request. JVM
will exit
normally.

Yes No

SIGBREAK Control A break signal
from a terminal.
By default, this
triggers a
Javadump.

Yes No

Note: A number supplied after the signal name is the standard numeric value for
that signal.

The IBM JVM uses structured exception handling and the SetConsoleCtrlHandler()
API. These are both disabled with -Xrs, however, only structured exception
handling is disabled by -Xrs:sync. -Xnosigchain is ignored on Windows.

Use the -Xrs (reduce signal usage) option to prevent the JVM from handling most
signals. For more information, see Oracle's Java application launcher page.

The signals 2 (SIGINT) and 15 (SIGTERM) on JVM threads causes the JVM to shut
down; therefore, an application signal handler should not attempt to recover from
this signal unless it no longer requires the JVM.

Linking a native code driver to the signal-chaining library
The Runtime Environment contains signal-chaining. Signal-chaining enables the
JVM to interoperate more efficiently with native code that installs its own signal
handlers.

36 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

http://docs.oracle.com/javase/6/docs/technotes/tools/windows/java.html

About this task

Signal-chaining enables an application to link and load the shared library jsig.dll
before msvcrt.dll. The jsig.dll library ensures that calls to signal() are intercepted so
that their handlers do not replace the JVM's signal handlers. Instead, these calls
save the new signal handlers, or "chain" them behind the handlers that are
installed by the JVM. Later, when any of these signals are raised and found not to
be targeted at the JVM, the preinstalled handlers are called.

The libjsig.dll library also hides JVM signal handlers from the application.
Therefore, calls such as signal(), sigset(), and sigaction() that are made after the
JVM has started no longer return a reference to the JVM's signal handler, but
instead return any handler that was installed before JVM startup.

The environment variable JAVA_HOME should be set to the location of the SDK, for
example, install_dir.

To use jsig.dll, link it with the application that creates or embeds a JVM.

Writing JNI applications
Valid Java Native Interface (JNI) version numbers that programs can specify on the
JNI_CreateJavaVM() API call are: JNI_VERSION_1_2(0x00010002) and
JNI_VERSION_1_4(0x00010004).

Restriction: Version 1.1 of the JNI is not supported.

This version number determines only the level of the JNI to use. The actual level
of the JVM that is created is specified by the JSE libraries (use the java -version
command to show the JVM level). The JNI level does not affect the language
specification that is implemented by the JVM, the class library APIs, or any other
area of JVM behavior. For more information, see http://docs.oracle.com/javase/6/
docs/technotes/guides/jni/.

If your application needs two JNI libraries, one built for 32-bit and the other for
64-bit, use the com.ibm.vm.bitmode system property to determine if you are
running with a 32-bit or 64-bit JVM and choose the appropriate library.

Supported compilers
These compilers have been tested with the IBM SDK.

The Microsoft Visual Studio v8 compiler is supported for Windows 32-bit on Intel.

JNI runtime linking
The Java Native Interface (JNI) enables runtime linking to dynamic native libraries.

For Version 6, runtime linking is supported from service refresh 9. If runtime
linking causes a symbol conflict, the application must resolve the conflict by
renaming the symbol on the application side, or by turning off runtime linking.

Dynamic linking

When you build a C or C++ program that uses the JNI Invocation API to create a
Java virtual machine, and calls Java code, use the linker option /link /LIBPATH to
do the following task:

Chapter 5. Developing Java applications 37

http://docs.oracle.com/javase/6/docs/technotes/guides/jni/
http://docs.oracle.com/javase/6/docs/technotes/guides/jni/

v Add lib_dir and lib_dir\j9vm to the list of directories that are searched for
shared objects. These directories contain the Java SDK shared libraries. You also
want to link with jvm.dll (by using the -ljvm option). Add lib_dir and
lib_dir\j9vm to the list of directories that are searched for shared objects.

On Windows, no special options are required for the command-line compiler
cl.exe. Generally, a Microsoft compiler is used, for example VC++. For more
information about compiler options, see the documentation for the compiler that is
being used. By default, VC++ picks libraries that are present in the environment
variable %LIB%. The variable must always point at the \lib subdirectory of the
VC++ SDK as one of the search paths for linking libraries.

Here is a typical command block to build the invocation API test:
cl.exe /I INSTALL_DIR\include
/FeinvAPITest
invAPITest.c
/link /LIBPATH:lib_dir\j9vm
/LIBPATH:lib_dir

When you run a C or C++ program that uses the JNI Invocation API to run Java
classes, ensure that the class path is set up correctly to enable the JVM to find your
class files. If you modify the Java boot class path, include the SDK files that are
necessary to run your applications.

To ensure that a JNI library exports the functions that a Java application must
resolve at runtime, you can examine the library by using the dumpbin.exe tool
(typically a part of the VC++ SDK installation). For example, a JNI library that is
named jnitest.dll, and that contains JNI routines fooImpl and barImpl, must
export the symbols:

C:\>dumpbin.exe /EXPORTS jnitest.dll
Dump of file jnitest.dll

File Type: DLL

Section contains the following exports for JNITEST.dll

00000000 characteristics
5412A472 time date stamp Fri Sep 12 03:44:50 2014

0.00 version
1 ordinal base
5 number of functions
5 number of names

ordinal hint RVA name
...

1 27 0000CE10 Java_mypackage_SampleClass_fooImpl = Java_mypackage_SampleClass_fooImpl
2 28 000085A0 Java_mypackage_SampleClass_barImpl = Java_mypackage_SampleClass_barImpl

...

For more information on dumpbin.exe and its options, see the MSDN
documentation.

On Windows, JNI methods are typically stored in dynamic libraries called
Dynamic Link Libraries (DLLs). DLLs contain functions, and sometimes data, that
can be referenced from outside the library, for example from a dynamic library or
an executable program. Native methods are stored in DLLs and are either linked at
build time, through the linking process, or at runtime, by dynamically loading the

38 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

methods by using the Windows API LoadLibrary() and LoadLibraryEx() functions.
For more information about the LoadLibrary() family of functions, refer to the
MSDN documentation.

You can store native methods as follows:

Dynamic link libraries
On Windows, JNI methods are typically stored in dynamic libraries called
Dynamic Link Libraries (DLLs). DLLs contain functions and data, which
can be referenced from another load module, for example a dynamic
library or an executable program. Native methods are stored in DLLs and
are either linked at build time, through the linking process, or at runtime,
by dynamically loading the methods by using the Windows API
LoadLibrary() and LoadLibraryEx() functions. For more information about
the LoadLibrary() family of functions, refer to the MSDN documentation.

Note: To ensure that dynamic linking of native libraries works successfully you
can, optionally, implement the lifecycle functions JNI_Onload() and
JNI_OnUnload() in the library. If you have implemented JNI_Onload(), the native
library must export it otherwise it is not visible to the runtime, and the JVM
assumes that the library requires only the JNI version JNI_VERSION_1.1. If
JNI_OnUnload() has been implemented, it must also be exported. If JNI_Onload()
is implemented and exported, then the latest JNI version is returned; for example,
JNI_VERSION_1.8.

Configuring large page memory allocation
You can enable large page support, on systems that support it, by starting Java
with the -Xlp option.

About this task

Large page usage is primarily intended to provide performance improvements to
applications that allocate a great deal of memory and frequently access that
memory. The large page performance improvements are a result of the reduced
number of misses in the Translation Lookaside Buffer (TLB). The TLB maps a
larger virtual storage area range and thus causes this improvement.

For the JVM to use large pages, your system must have an adequate number of
contiguous large pages available. If large pages cannot be allocated, even when
enough pages are available, possibly the large pages are not contiguous.

To use large pages, the user that runs Java must have the authority to lock pages
in memory. To enable this authority, as Administrator go to Control Panel >
Administrative Tools > Local Security Policy and then find Local Policies > User
Rights Assignment > Lock pages in memory. Alternatively, run secpol.msc. Add
the user who runs the Java process, and reboot your machine. For more
information, see these websites:
v http://msdn.microsoft.com/en-us/library/aa366720(VS.85).aspx
v http://msdn.microsoft.com/en-us/library/aa366568(VS.85).aspx

Large page allocations only succeed if the local administrative policy for the JVM
user has the Lock pages in memory setting enabled.

On Microsoft Windows Vista and later, and Windows 2008 and later, use of large
pages is affected by the User Account Control (UAC) feature. When UAC is

Chapter 5. Developing Java applications 39

http://msdn.microsoft.com/en-us/library/aa366720(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa366568(VS.85).aspx

enabled, a regular user (a member of the Users group) can use the -Xlp option as
normal. However, an administrative user (a member of the Administrators group)
must run the application as an administrator to gain the privileges required to lock
pages in memory. To run as administrator, right-click the application and click Run
as administrator. If the user does not have the necessary privileges, the following
error message is produced: System configuration does not support option
'-Xlp'.

For more information about the -Xlp options, see “JVM command-line options” on
page 83.

To obtain the large page sizes available and the current setting, use the
-verbose:sizes option. Note the current settings are the requested sizes and not
the sizes obtained. For object heap size information, check the -verbose:gc output.

CORBA support
The Java Platform, Standard Edition (JSE) supports, at a minimum, the
specifications that are defined in the compliance document from Oracle. In some
cases, the IBM JSE ORB supports more recent versions of the specifications.

The minimum specifications supported are defined in the Official Specifications for
CORBA support in Java SE 6: http://docs.oracle.com/javase/6/docs/api/org/
omg/CORBA/doc-files/compliance.html.

Support for GIOP 1.2

This SDK supports all versions of GIOP, as defined by chapters 13 and 15 of the
CORBA 2.3.1 specification, OMG document formal/99-10-07.

http://www.omg.org/cgi-bin/doc?formal/99-10-07

Bidirectional GIOP is not supported.

Support for Portable Interceptors

This SDK supports Portable Interceptors, as defined by the OMG in the document
ptc/01–03–04, which you can obtain from:

http://www.omg.org/cgi-bin/doc?ptc/01–03-04

Portable Interceptors are hooks into the ORB that ORB services can use to intercept
the normal flow of execution of the ORB.

Support for Interoperable Naming Service

This SDK supports the Interoperable Naming Service, as defined by the OMG in
the document ptc/00-08-07, which you can obtain from:

http://www.omg.org/cgi-bin/doc?ptc/00-08-07

The default port that is used by the Transient Name Server (the tnameserv
command), when no ORBInitialPort parameter is given, has changed from 900 to
2809, which is the port number that is registered with the IANA (Internet Assigned
Number Authority) for a CORBA Naming Service. Programs that depend on this
default might have to be updated to work with this version.

40 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

http://docs.oracle.com/javase/6/docs/api/org/omg/CORBA/doc-files/compliance.html
http://docs.oracle.com/javase/6/docs/api/org/omg/CORBA/doc-files/compliance.html
http://www.omg.org/cgi-bin/doc?formal/99-10-07
http://www.omg.org/cgi-bin/doc?ptc/01-03-04
http://www.omg.org/cgi-bin/doc?ptc/00-08-07

The initial context that is returned from the Transient Name Server is now an
org.omg.CosNaming.NamingContextExt. Existing programs that narrow the
reference to a context org.omg.CosNaming.NamingContext still work, and do not
need to be recompiled.

The ORB supports the -ORBInitRef and -ORBDefaultInitRef parameters that are
defined by the Interoperable Naming Service specification, and the
ORB::string_to_object operation now supports the ObjectURL string formats
(corbaloc: and corbaname:) that are defined by the Interoperable Naming Service
specification.

The OMG specifies a method ORB::register_initial_reference to register a service
with the Interoperable Naming Service. However, this method is not available in
the Oracle Java Core API at this release. Programs that have to register a service in
the current version must invoke this method on the IBM internal ORB
implementation class. For example, to register a service “MyService”:
((com.ibm.CORBA.iiop.ORB)orb).register_initial_reference("MyService",
serviceRef);

Where orb is an instance of org.omg.CORBA.ORB, which is returned from
ORB.init(), and serviceRef is a CORBA Object, which is connected to the ORB.
This mechanism is an interim one, and is not compatible with future versions or
portable to non-IBM ORBs.

System properties for tracing the ORB
A runtime debug feature provides improved serviceability. You might find it useful
for problem diagnosis or it might be requested by IBM service personnel.

Tracing Properties

com.ibm.CORBA.Debug=true|fine|finer|finest
Turns on ORB tracing.

com.ibm.CORBA.CommTrace=true
Adds GIOP messages (sent and received) to the trace.

com.ibm.CORBA.Debug.Output=<file>
Specify the trace output file. By default, this is of the form
orbtrc.DDMMYYYY.HHmm.SS.txt.

Example of ORB tracing

For example, to trace events and formatted GIOP messages from the command
line, type:
java -Dcom.ibm.CORBA.Debug=true

-Dcom.ibm.CORBA.CommTrace=true <myapp>

Limitations

Do not enable tracing for normal operation, because it might cause performance
degradation. Even if you have switched off tracing, FFDC (First Failure Data
Capture) is still working, so serious errors are reported. If a debug output file is
generated, examine it to check on the problem. For example, the server might have
stopped without performing an ORB.shutdown().

The content and format of the trace output might vary from version to version.

Chapter 5. Developing Java applications 41

|

System properties for tuning the ORB
The ORB can be tuned to work well with your specific network. The properties
required to tune the ORB are described here.

com.ibm.CORBA.FragmentSize=<size in bytes>
Used to control GIOP 1.2 fragmentation. The default size is 1024 bytes.

To disable fragmentation, set the fragment size to 0 bytes:
java -Dcom.ibm.CORBA.FragmentSize=0 <myapp>

com.ibm.CORBA.RequestTimeout=<time in seconds>
Sets the maximum time to wait for a CORBA Request. By default the ORB
waits indefinitely. Do not set the timeout too low to avoid connections ending
unnecessarily.

com.ibm.CORBA.LocateRequestTimeout=<time in seconds>
Set the maximum time to wait for a CORBA LocateRequest. By default the
ORB waits indefinitely.

com.ibm.CORBA.ListenerPort=<port number>
Set the port for the ORB to read incoming requests on. If this property is set,
the ORB starts listening as soon as it is initialized. Otherwise, it starts listening
only when required.

Java security permissions for the ORB
When running with a Java SecurityManager, invocation of some methods in the
CORBA API classes might cause permission checks to be made, which might result
in a SecurityException. If your program uses any of these methods, ensure that it is
granted the necessary permissions.

Table 5. Methods affected when running with Java SecurityManager

Class/Interface Method Required permission

org.omg.CORBA.ORB init java.net.SocketPermission
resolve

org.omg.CORBA.ORB connect java.net.SocketPermission
listen

org.omg.CORBA.ORB resolve_initial_references java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

_is_a java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

_non_existent java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

OutputStream _request
(String, boolean)

java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

_get_interface_def java.net.SocketPermission
connect

org.omg.CORBA. Request invoke java.net.SocketPermission
connect

org.omg.CORBA. Request send_deferred java.net.SocketPermission
connect

org.omg.CORBA. Request send_oneway java.net.SocketPermission
connect

javax.rmi.
PortableRemoteObject

narrow java.net.SocketPermission
connect

42 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

ORB implementation classes
A list of the ORB implementation classes.

The ORB implementation classes in this release are:
v org.omg.CORBA.ORBClass=com.ibm.CORBA.iiop.ORB
v org.omg.CORBA.ORBSingletonClass=com.ibm.rmi.corba.ORBSingleton
v javax.rmi.CORBA.UtilClass=com.ibm.CORBA.iiop.UtilDelegateImpl
v javax.rmi.CORBA.StubClass=com.ibm.rmi.javax.rmi.CORBA.StubDelegateImpl
v javax.rmi.CORBA.PortableRemoteObjectClass

=com.ibm.rmi.javax.rmi.PortableRemoteObject

These are the default values, and you are advised not to set these properties or
refer to the implementation classes directly. For portability, make references only to
the CORBA API classes, and not to the implementation. These values might be
changed in future releases.

RMI over IIOP
Java Remote Method Invocation (RMI) provides a simple mechanism for
distributed Java programming. RMI over IIOP (RMI-IIOP) uses the Common
Object Request Broker Architecture (CORBA) standard Internet Inter-ORB Protocol
(IIOP) to extend the base Java RMI to perform communication. This allows direct
interaction with any other CORBA Object Request Brokers (ORBs), whether they
were implemented in Java or another programming language.

The following documentation is available:
v The RMI-IIOP Programmer's Guide is an introduction to writing RMI-IIOP

programs.
v The Java Language to IDL Mapping document is a detailed technical specification

of RMI-IIOP: http://www.omg.org/cgi-bin/doc?ptc/00-01-06.pdf.

Implementing the Connection Handler Pool for RMI
Thread pooling for RMI Connection Handlers is not enabled by default.

About this task

To enable the connection pooling implemented at the RMI TCPTransport level, set
the option
-Dsun.rmi.transport.tcp.connectionPool=true

This version of the Runtime Environment does not have a setting that you can use
to limit the number of threads in the connection pool.

Enhanced BigDecimal
From Java 5.0, the IBM BigDecimal class has been adopted by Oracle as
java.math.BigDecimal. The com.ibm.math.BigDecimal class is reserved for possible
future use by IBM and is currently deprecated. Migrate existing Java code to use
java.math.BigDecimal.

The new java.math.BigDecimal uses the same methods as both the previous
java.math.BigDecimal and com.ibm.math.BigDecimal. Existing code using
java.math.BigDecimal continues to work correctly. The two classes do not serialize.

Chapter 5. Developing Java applications 43

http://www.omg.org/cgi-bin/doc?ptc/00-01-06.pdf

To migrate existing Java code to use the java.math.BigDecimal class, change the
import statement at the start of your .java file from: import com.ibm.math.*; to
import java.math.*;.

Support for the Java Attach API
Your application can connect to another “target” virtual machine using the Java
Attach API. Your application can then load an agent application into the target
virtual machine, for example to perform tasks such as monitoring status. Support
for the Java Attach API was added in Java 6 SR 6.

Code for agent applications, such as JMX agents or JVMTI agents, is normally
loaded during virtual machine startup by specifying special startup parameters.
Requiring startup parameters might not be convenient for using agents on
applications that are already running, such as WebSphere Application Servers. You
can use the Java Attach API to load an agent at any time, by specifying the process
ID of the target virtual machine. The Attach API capability is sometimes called the
“late attach” capability.

Support for the Attach API is enabled by default for Java 6 SR 6 and later.

Security considerations

The Java Attach API creates files and directories in a common directory. On
Windows, security of the common directory and its subdirectories and files is
handled by Windows security mechanisms. This means that only the process
owner can connect to their processes.

You must secure access to the Java Attach API capability to ensure that only
authorized users or processes can connect to another virtual machine. If you do not
intend to use the Java Attach API capability, disable this feature using a Java
system property. Set the com.ibm.tools.attach.enable system property to the
value no; for example:
-Dcom.ibm.tools.attach.enable=no

The Attach API can be enabled by setting the com.ibm.tools.attach.enable system
property to the value yes; for example:
-Dcom.ibm.tools.attach.enable=yes

Using the Java Attach API

By default, the target virtual machine is identified by its process ID. To use a
different target, change the system property com.ibm.tools.attach.id; for example:
-Dcom.ibm.tools.attach.id=<process_ID>

The target process also has a human-readable “display name”. By default, the
display name is the command line used to start Java. To change the default display
name, use the com.ibm.tools.attach.displayName system property. The ID and
display name cannot be changed after the application has started.

The Attach API creates working files in a common directory, which by default is
called .com_ibm_tools_attach and is created in the system temporary directory.
The system property java.io.tmpdir holds the value of the system temporary
directory. On Windows systems, the system temporary directory is typically
C:\Documents and Settings\<userid>\Local Settings\Temp.

44 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

You can specify a different common directory from the default, by using the
following Java system property:
-Dcom.ibm.tools.attach.directory=directory_name

This system property causes the specified directory, directory_name, to be used as
the common directory. If the directory does not already exist, it is created, however
the parent directory must already exist. For example, the following system
property creates a common directory called myattachapidir in the C: directory. The
C: directory must already exist.
-Dcom.ibm.tools.attach.directory=C:\myattachapidir

The common directory must be located on a local drive; specifying a network
mounted file system might result in incorrect behavior.

If your Java application ends abnormally, for example, following a crash or a
SIGKILL signal, the process subdirectory is not deleted. The Java VM detects and
removes obsolete subdirectories where possible. The subdirectory can also be
deleted by the owning user ID.

On heavily loaded system, applications might experience timeouts when
attempting to connect to target applications. The default timeout is 120 seconds.
Use the com.ibm.tools.attach.timeout system property to specify a different
timeout value in milliseconds. For example, to timeout after 60 seconds:
-Dcom.ibm.tools.attach.timeout=60000

A timeout value of zero indicates an indefinite wait.

For JMX applications, you can disable authentication by editing the
<JAVA_HOME>/jre/lib/management/management.properties file. Set the following
properties to disable authentication in JMX:
com.sun.management.jmxremote.authenticate=false
com.sun.management.jmxremote.ssl=false

Problems with the Attach API result in one of the following exceptions:
v com.ibm.tools.attach.AgentLoadException

v com.ibm.tools.attach.AgentInitializationException

v com.ibm.tools.attach.AgentNotSupportedException

v java.io.IOException

A useful reference for information about the Attach API can be found at
http://docs.oracle.com/javase/6/docs/technotes/guides/attach/index.html. The
IBM implementation of the Attach API is equivalent to the Oracle Corporation
implementation. However, the IBM implementation cannot be used to attach to, or
accept attach requests from, non-IBM virtual machines. To use the attach API to
attach to target processes from your application, you must add the "tools.jar"
library to the application classpath. This library is not required for the target
processes to accept attach requests.

Chapter 5. Developing Java applications 45

http://docs.oracle.com/javase/6/docs/technotes/guides/attach/index.html

46 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

Chapter 6. Plug-in, Applet Viewer and Web Start

The Java plug-in is used to run Java applications in the browser. The appletviewer
is used to test applications designed to be run in a browser. Java Web Start is used
to deploy desktop Java applications over a network, and provides a mechanism for
keeping them up-to-date.

Using the Java plug-in
The Java plug-in is a web browser plug-in. You use the Java plug-in to run applets
in the browser.

Allow enough time for applets to finish loading, otherwise your browser might
seem to “stop”. For example, if you click Back and then click Forward while an
applet is loading, the HTML pages might be unable to load.

The Java plug-in is documented at: http://docs.oracle.com/javase/6/docs/
technotes/guides/jweb/applet/applet_dev_guide.html.

Supported browsers
The Java plug-in supports the following browsers: .

Table 6. Browsers supported by the Java plug-in on Windows

Browser Supported versions

Internet Explorer 6.0 SP1, 7.0, 8.0, 9.0, 10.0

Firefox 2.0, 3.0, 3.5, 3.6, 4.0, 5.0, 6.0, and later
releases

Note: Internet Explorer V10.0 is the default browser on Windows 8 classic edition.

Later minor releases of these browsers are also supported.

Internet Explorer 5.01, the default browser on Windows 2000, is not supported.

Installing the Java plug-in using the Java control panel
You can use the Java control panel to install the Java plug-in for Internet Explorer
and Mozilla Firefox.

Before you begin

The IBM SDK for Java must be installed before using this method.

About this task

If the Java plug-in was not installed when the SDK was installed, follow these
steps to install the plug-in using the Java control panel:

Procedure
1. Open the Windows Control Panel.
2. Double-click IBM Control Panel for Java.

© Copyright IBM Corp. 2003, 2016 47

|

|

http://docs.oracle.com/javase/6/docs/technotes/guides/jweb/applet/applet_dev_guide.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jweb/applet/applet_dev_guide.html

3. Select the Advanced tab.
4. Select Default Java for Browsers.
5. To install the Java plug-in for specific browsers, select the corresponding check

box. To remove the Java plug-in from specific browsers, clear the corresponding
check box. On Windows Vista, Windows Server 2008 R2 and Windows 7, the
check box to associate with Internet Explorer is disabled by default. You cannot
change this selection. By default, the Next-Generation plug-in is enabled. If you
want to switch between a Next-Generation and a First-Generation, or Classic
plug-in, follow these steps:
a. Open the IBM Control Panel for Java.
b. Select Advanced > Java Plug-in and check or clear the option Enable the

next-generation Java Plug-in. This action changes the association between
old style and Next-Generation plug-ins.

What to do next

Restriction: On Windows Vista with Federal Desktop Core Configuration (FDCC),
you must run the Java Control Panel in elevated privilege mode. Browse to the
<SDK>\jre\bin directory in Explorer, right-click the javacpl.exe icon, and select
Run as administrator.

Secure Static Versioning (SSV) support
Static versioning allows applets to request a specific JVM version to be run under.
Secure Static Versioning is used on Internet Explorer because this capability allows
applets to use old security vulnerabilities on systems that have been upgraded to a
new JVM.

About this task

Secure Static Versioning (SSV) support is not applicable for Next Generation
plug-ins.

SSV does not function if third-party browser extensions are disabled in Internet
Explorer. To enable third-party browser extensions:
1. Open Internet Explorer.
2. Click Tools > Internet Options.
3. Click the Advanced tab.
4. Select the Enable third-party browser extensions check box.

If third-party browser extensions are disabled after SSV has been used, SSV will
continue to function.

Common Document Object Model (DOM) support
Because of limitations in particular browsers, you might not be able to implement
all the functions of the org.w3c.dom.html package.

One of the following errors is thrown:
v sun.plugin.dom.exception.InvalidStateException
v sun.plugin.dom.exception.NotSupportedException

48 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

Using DBCS parameters
The Java plug-in supports double-byte characters (for example, Chinese Traditional
BIG-5, Korean, and Japanese) as parameters for the tags <APPLET>, <OBJECT>,
and <EMBED>. You must select the correct character encoding for your HTML
document so that the Java plug-in can parse the parameter.

About this task

Specify character encoding for your HTML document by using the <META> tag in
the <HEAD> section like this:
<meta http-equiv="Content-Type" content="text/html; charset=big5">

This example tells the browser to use the Chinese BIG-5 character encoding to
parse the HTML file.

Working with applets
With the Applet Viewer, you can run one or more applets that are called by
reference in a Web page (HTML file) by using the <APPLET> tag. The Applet
Viewer finds the <APPLET> tags in the HTML file and runs the applets, in
separate windows, as specified by the tags.

Because the Applet Viewer is for viewing applets, it cannot display a whole Web
page that contains many HTML tags. It parses only the <APPLET> tags and no
other HTML on the Web page.

Running and debugging applets with the Applet Viewer
Use the following commands to run and debug an applet with the Applet Viewer.

Procedure
v To run an applet with the Applet Viewer, enter the following command:

appletviewer <name>.

<name> is one of the following options:
– The file name of an HTML file that calls an applet.
– The URL of a Web page that calls an applet.
For example, to start the Applet Viewer on an HTML file that calls an applet,
type at a command prompt:
appletviewer <demo>\GraphLayout\example1.html

Where <demo> is replaced by the full path into which you unzipped the demo
package.
To start the Applet Viewer on a Web page, type at a command prompt:
appletviewer http://mywebpage.com/demo/applets/MyApplet/example1.html

The Applet Viewer does not recognize the charset option of the <META> tag. If
the file that the Applet Viewer loads is not encoded as the system default, an
I/O exception might occur. To avoid the exception, use the -encoding option
when you run appletviewer. For example:
appletviewer -encoding JISAutoDetect sample.html

v To debug an applet with the Applet Viewer, use the debug parameter with the
appletviewer command.
For example:

Chapter 6. Plug-in, Applet Viewer and Web Start 49

>
cd demo\applets\TicTacToe
..\..\..\bin\appletviewer -debug example1.html

You can find documentation about how to debug applets using the Applet
Viewer at the Oracle Web site: http://docs.oracle.com/javase/6/docs/
technotes/guides/plugin/developer_guide/debugger.html

Unique CLSIDs
A unique set of CLSIDs have been added to the IBM JVM from Version 6.

The new CLSIDs are as follows:
1ACECAFE-0016-0000-0000-ABCDEFFEDCBA
1ACECAFE-0016-0000-0000-ABCDEFFEDCBB
1ACECAFE-0016-0000-0000-ABCDEFFEDCBC

You can refer to these CLSIDs in the OBJECT Tag for your applets.

In addition, the following existing CLSIDs are also supported for compatibility
purposes:
CAFEEFAC-0016-0000-0000-ABCDEFFEDCBA
CAFEEFAC-0016-0000-0000-ABCDEFFEDCBB
CAFEEFAC-0016-0000-0000-ABCDEFFEDCBC

Using Web Start
Java Web Start is used for Java application deployment.

With Web Start, you can start and manage applications directly from the Web.
Applications are cached to minimize installation times. Applications are
automatically upgraded when new versions become available.

Web Start supports these command-line arguments documented at
http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/
developersguide/syntax.html#resources:
v -verbose
v -version
v -showversion
v -help
v -X
v -ea
v -enableassertions
v -da
v -disableassertions
v -esa
v -enablesystemassertions
v -dsa
v -disablesystemassertions
v -Xint
v -Xnoclassgc
v -Xdebug
v -Xfuture

50 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

http://docs.oracle.com/javase/6/docs/technotes/guides/plugin/developer_guide/debugger.html
http://docs.oracle.com/javase/6/docs/technotes/guides/plugin/developer_guide/debugger.html
http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/developersguide/syntax.html#resources
http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/developersguide/syntax.html#resources

v -Xrs
v -Xms
v -Xmx
v -Xss

Web Start also supports -Xgcpolicy to set the garbage collection policy.

From service refresh 10, the Autodownload option in the Java Control Panel is set
to Always by default. This option enables a user without administration privileges
to download the JRE from the location specified in the JNLP file.

For more information about Web Start, see:
v http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136112.html

and
v http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/index.html.

For more information about deploying applications, see:
v http://docs.oracle.com/javase/6/docs/technotes/guides/deployment/

index.html.

Running Web Start
Web Start can be run from a Web page or the command line. Web Start
applications are stored in the Java Application Cache.

About this task

You can start Web Start in a number of different ways.

Procedure
v Select a link on a Web page that refers to a .jnlp file. If your browser does not

have the correct association to run Web Start applications, select the C:\Program
Files\IBM\Java60\jre\bin\javaws.exe command from the Open/Save window
to start the Web Start application.

v At a command prompt, type:
javaws <URL>

Where <URL> is the location of a .jnlp file.
v If you have used Java Web Start to open the application in the past, use the Java

Application Cache Viewer. At a command prompt, type:
C:\Program Files\IBM\Java60\jre\bin\javaws -viewer

All Java Web Start applications are stored in the Java Application Cache. An
application is downloaded only if the latest version is not in the cache.

WebStart Secure Static Versioning
Static versioning allows Web Start applications to request a specific JVM version on
which those applications will run. Because static versioning also allows
applications to exploit old security vulnerabilities on systems that have been
upgraded to a new JVM, Secure Static Versioning (SSV) is now used by default.

With SSV, the user is warned before running any unsigned Web Start application
that requests a specific JVM, if the requested JVM is installed. Signed applications
and applications that request the latest version of the JVM run as usual.

Chapter 6. Plug-in, Applet Viewer and Web Start 51

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136112.html
http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/deployment/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/deployment/index.html

You can disable SSV by setting the deployment.javaws.ssv.enabled property in the
deployment.properties file to false.

SSV is not supported for Next-Generation plug-ins. SSV is applicable only for
First-generation plug-ins.

Distributing Java applications
Java applications typically consist of class, resource, and data files.

When you distribute a Java application, your software package probably consists of
the following parts:
v Your own class, resource, and data files
v An installation procedure or program

To run your application, a user needs the Runtime Environment for Windows. The
SDK for Windows software contains a Runtime Environment. However, you cannot
assume that your users have the SDK for Windows software installed.

Your SDK for Windows software license does not allow you to redistribute any of
the SDK files with your application. You must ensure that a licensed version of the
SDK for Windows is installed on the target workstation.

52 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

Chapter 7. Class data sharing between JVMs

Class data sharing enables multiple JVMs to share a single space in memory.

You can share class data between Java Virtual Machines (JVMs) by storing it in a
memory-mapped cache file on disk. Sharing reduces the overall virtual storage
consumption when more than one JVM shares a cache. Sharing also reduces the
startup time for a JVM after the cache has been created. The shared class cache is
independent of any running JVM and persists until it is deleted.

A shared cache can contain:
v Bootstrap classes
v Application classes
v Metadata that describes the classes
v Ahead-of-time (AOT) compiled code

The format of classes stored in the shared classes cache is changed in this release at
service refresh 13. As a result, there is a different shared cache generation number,
which causes the JVM to create a new shared classes cache, rather than re-creating
or reusing an existing cache. To save space, all existing shared caches should be
removed unless they are in use by an earlier release of IBM SDK, Java Technology
Edition, Version 6. For more information about deleting a shared classes cache, see
“Class data sharing command-line options” on page 55.

Overview of class data sharing
Class data sharing provides a method of reducing memory footprint and
improving JVM start time. Java 6 provides new and improved features in cache
management, isolation, and performance.

Enabling class data sharing

Enable class data sharing by using the -Xshareclasses option when starting a
JVM. The JVM connects to an existing cache or creates a new cache if one does not
exist.

All bootstrap and application classes loaded by the JVM are shared by default.
Custom class loaders share classes automatically if they extend the application
class loader. Otherwise, they must use the Java Helper API provided with the JVM
to access the cache. See “Adapting custom class loaders to share classes” on page
61.

The JVM can also store ahead-of-time (AOT) compiled code in the cache for certain
methods to improve the startup time of subsequent JVMs. The AOT compiled code
is not shared between JVMs, but is cached to reduce compilation time when the
JVM starts. The amount of AOT code stored in the cache is determined
heuristically. You cannot control which methods get stored in the cache. You can
set maximum and minimum limits on the amount of cache space used for AOT
code, or you can disable AOT caching completely. See “Class data sharing
command-line options” on page 55 for more information.

© Copyright IBM Corp. 2003, 2016 53

|
|
|
|
|
|
|

Cache access

A JVM can access a cache with either read/write or read-only access. Any JVM
connected to a cache with read/write access can update the cache. Any number of
JVMs can concurrently read from the cache, even while another JVM is writing to
it.

You must take care if runtime bytecode modification is being used. See “Runtime
bytecode modification” on page 60 for more information.

Dynamic updating of the cache

The shared class cache persists beyond the lifetime of any JVM. Therefore, the
cache is updated dynamically to reflect any modifications that might have been
made to JARs or classes on the file system. The dynamic updating makes the cache
independent of the application using it.

Cache security

Access to the shared class cache is limited by operating system permissions and
Java security permissions.

Only a class loader that has registered to share class data can update the shared
class cache.

The cache memory is protected against accidental or deliberate corruption using
memory page protection. This protection is not an absolute guarantee against
corruption because the JVM must unprotect pages to write to them. The only way
to guarantee that a cache cannot be modified is to open it read-only.

If a Java SecurityManager is installed, classloaders, excluding the default bootstrap,
application, and extension class loaders, must be granted permission to share
classes. Grant permission by adding SharedClassPermission lines to the
java.policy file. See “Using SharedClassPermission” on page 61 for more
information. The RuntimePermission createClassLoader restricts the creation of
new class loaders and therefore also restricts access to the cache.

Cache lifespan

Multiple caches can exist on a system and you specify them by name as a
suboption to the -Xshareclasses command. A JVM can connect to only one cache
at any one time.

You can override the default cache size on startup using -Xscmx<n><size>. This size
is then fixed for the lifetime of the cache. Caches exist until they are explicitly
deleted using a suboption to the -Xshareclasses command or the cache file is
deleted manually.

Cache utilities

All cache utilities are suboptions to the -Xshareclasses command. See “Class data
sharing command-line options” on page 55 or use -Xshareclasses:help to see a
list of available suboptions.

54 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

Class data sharing command-line options
Class data sharing and the cache management utilities are controlled using
command-line options to the Java technology launcher.

For options that take a <size> parameter, suffix the number with "k" or "K" to
indicate kilobytes, "m" or "M" to indicate megabytes, or "g" or "G" to indicate
gigabytes.

-Xscmaxaot<size>
Sets the maximum number of bytes in the cache that can be used for AOT
data. Use this option to ensure that a certain amount of cache space is
available for non-AOT data. By default, the maximum limit for AOT data is
the amount of free space in the cache. The value of this option should not be
smaller than the value of -Xscminaot and must not be larger than the value of
-Xscmx.

-Xscminaot<size>
Sets the minimum number of bytes in the cache to reserve for AOT data. By
default, no space is reserved for AOT data, although AOT data is written to
the cache until the cache is full or the -Xscmaxaot limit is reached. The value of
this option must not exceed the value of -Xscmx or -Xscmaxaot. The value of
-Xscminaot must always be considerably less than the total cache size because
AOT data can be created only for cached classes. If the value of -Xscminaot is
equal to the value of -Xscmx, no class data or AOT data is stored because AOT
data must be associated with a class in the cache.

-Xscmx<size>
Specifies cache size. This option applies only if a cache is being created and no
cache of the same name exists. The default cache size is platform-dependent.
You can find out the size value being used by adding -verbose:sizes as a
command-line argument. The minimum cache size is 4 KB. The maximum
cache size is also platform-dependent. (See “Cache size limits” on page 60.)

-Xshareclasses:<suboption>[,<suboption>...]
Enables class data sharing. Can take a number of suboptions, some of which
are cache utilities. Cache utilities perform the required operation on the
specified cache, without starting the VM. You can combine multiple
suboptions, separated by commas, but the cache utilities are mutually
exclusive. When running cache utilities, the message Could not create the
Java virtual machine is expected. Cache utilities do not create the virtual
machine.

Some cache utilities can work with caches from previous Java versions or
caches that are created by JVMs with different bit-widths. These caches are
referred to as “incompatible” caches.

You can use the following suboptions with the -Xshareclasses option:

help
Lists all the command-line suboptions.

name=<name>
Connects to a cache of a given name, creating the cache if it does not
already exist. Also used to indicate the cache that is to be modified by
cache utilities; for example, destroy. Use the listAllCaches utility to show
which named caches are currently available. If you do not specify a name,
the default name “sharedcc_%u” is used. %u in the cache name inserts the
current user name.

Chapter 7. Class data sharing between JVMs 55

cacheDir=<directory>
Sets the directory in which cache data is read and written. By default,
<directory> is the user's C:\Documents and Settings\<username>\Local
Settings\Application Data\javasharedresources directory. The user must
have sufficient permissions in <directory>. The JVM writes persistent cache
files directly into the directory specified. Persistent cache files can be safely
moved and deleted from the file system. Non-persistent caches are stored
in shared memory and have control files that describe the location of the
memory. Control files are stored in a javasharedresources subdirectory of
the cacheDir specified. Do not move or delete control files in this directory.
The listAllCaches utility, the destroyAll utility, and the expire suboption
work only in the scope of a given cacheDir.

readonly
Opens an existing cache with read-only permissions. The Java virtual
machine does not create a new cache with this suboption. Opening a cache
read-only prevents the VM from making any updates to the cache. If you
specify this suboption, the VM can connect to caches that were created by
other users or groups without requiring write access.

By default, this suboption is not specified.

persistent (default)
Uses a persistent cache. The cache is created on disk, which persists
beyond operating system restarts. Non-persistent and persistent caches can
have the same name.

nonpersistent
Uses a non-persistent cache. The cache is deleted when the operating
system shuts down. Non-persistent and persistent caches can have the
same name. You must always use the nonpersistent suboption when
running utilities such as destroy on a non-persistent cache.

verbose
Enables verbose output, which provides overall status on the shared class
cache and more detailed error messages.

verboseAOT
Enables verbose output when compiled AOT code is being found or stored
in the cache. AOT code is generated heuristically. You might not see any
AOT code generated at all for a small application. You can disable AOT
caching by using the noaot suboption.

verboseIO
Gives detailed output on the cache I/O activity, listing information on
classes that are stored and found. Each class loader is given a unique ID
(the bootstrap loader is always 0) and the output shows the class loader
hierarchy at work, where class loaders must ask their parents for a class
before they can load it themselves. It is usual to see many failed requests;
this behavior is expected for the class loader hierarchy.

verboseHelper
Enables verbose output for the Java Helper API. This output shows you
how the Helper API is used by your class loader.

silent
Turns off all shared classes messages, including error messages.
Unrecoverable error messages, which prevent the JVM from initializing, are
displayed.

56 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

nonfatal
Allows the JVM to start even if class data sharing fails. Normal behavior
for the JVM is to refuse to start if class data sharing fails. If you select
nonfatal and the shared classes cache fails to initialize, the JVM attempts
to connect to the cache in read-only mode. If this attempt fails, the JVM
starts without class data sharing.

none
Can be added to the end of a command line to disable class data sharing.
This suboption overrides class sharing arguments found earlier on the
command line.

modified=<modified context>
Used when a JVMTI agent is installed that might modify bytecode at run
time. If you do not specify this suboption and a bytecode modification
agent is installed, classes are safely shared with an extra performance cost.
The <modified context> is a descriptor that is chosen by the user; for
example, “myModification1”. This option partitions the cache, so that only
JVMs that use context myModification1 can share the same classes. For
instance, if you run HelloWorld with a modification context and then run
it again with a different modification context, all classes are stored twice in
the cache. For more information, see “Runtime bytecode modification” on
page 60.

reset
Causes a cache to be destroyed and then re-created when the JVM starts
up. Can be added to the end of a command line as -Xshareclasses:reset.

destroy (Utility option)
Destroys a cache specified by the name, cacheDir, and nonpersistent
suboptions. A cache can be destroyed only if all JVMs using it have shut
down, and the user has sufficient permissions.

destroyAll (Utility option)
Tries to destroy all caches available using the specified cacheDir and
nonpersistent suboptions. A cache can be destroyed only if all JVMs using
it have shut down, and the user has sufficient permissions.

Note: On z/OS, when the destroyAll option is invoked from a 31-bit JVM,
64-bit caches are not destroyed. Similarly, when the destroyAll option is
invoked from a 64-bit JVM, 31-bit caches are not destroyed. The following
message is displayed:
JVMSHRC735I: Use a nn-bit JVM to perform the requested operation on the
nn-bit shared cache \"cachename\" as the nn-bit JVM
cannot verify that the shared memory was created by the JVM.

expire=<time in minutes>
Destroys all caches that have been unused for the time that is specified
before loading shared classes. This option is not a utility option because it
does not cause the JVM to exit. On NTFS file systems, the expire option is
accurate to the nearest hour.

listAllCaches (Utility option)
Lists all the compatible and incompatible caches that exist in the specified
cache directory. If you do not specify cacheDir, the default directory is
used. Summary information, such as Java version and current usage is
displayed for each cache.

printStats (Utility option)
Displays summary information for the cache that is specified by the name,

Chapter 7. Class data sharing between JVMs 57

cacheDir, and nonpersistent suboptions. The most useful information that
is displayed is how full the cache is and how many classes it contains.
Stale classes are classes that are updated on the file system and which the
cache has therefore marked as "stale". Stale classes are not purged from the
cache and can be reused. For more information, see printStats utility.

printAllStats (Utility option)
Displays detailed information for the cache that is specified by the name,
cacheDir, and nonpersistent suboptions. Every class is listed in
chronological order, with a reference to the location from which it was
loaded. AOT code for class methods is also listed.

For more information, see printAllStats utility.

mprotect=[all | default | none]
By default, the memory pages that contain the cache are always protected,
unless a specific page is being updated. This protection helps prevent
accidental or deliberate corruption to the cache. The cache header is not
protected by default because this protection has a performance cost.
Specifying all ensures that all the cache pages are protected, including the
header. Specifying none disables the page.

Note: Specifying all has a negative impact on performance. You should
specify all only for problem diagnosis, and not for production.

noBootclasspath
Prevents storage of classes that are loaded by the bootstrap class loader in
the shared classes cache. Can be used with the SharedClassURLFilter API
to control exactly which classes get cached. For more information about
shared class filtering, see Using the SharedClassHelper API.

cacheRetransformed
Enables caching of classes that are transformed by using the JVMTI
RetransformClasses function.

noaot
Disables caching of AOT code. AOT code already in the shared data cache
can be loaded.

Creating, populating, monitoring, and deleting a cache
An overview of the lifecycle of a shared class data cache, including examples of
the cache management utilities.

To enable class data sharing, add -Xshareclasses[:name=<name>] to your
application command line.

The Java virtual machine (VM) either connects to an existing cache of the given
name or creates a new cache of that name. If a new cache is created, it is
populated with all bootstrap and application classes that are being loaded until the
cache becomes full. If two or more VMs are started concurrently, they populate the
cache concurrently.

To check that the cache is created, run java -Xshareclasses:listAllCaches. To see
how many classes and how much class data is being shared, run java
-Xshareclasses:[name=<name>],printStats. You can run these utilities after the
application VM ends or in another command window.

58 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

For more feedback on cache usage while the VM is running, use the verbose
suboption. For example, java -Xshareclasses:[name=<name>],verbose.

To see classes that are being loaded from the cache or stored in the cache, add
-Xshareclasses:[name=<name>],verboseIO to your command line when you run
your application.

Caches can be deleted if they contain many stale classes or if the cache is full and
you want to create a bigger cache. To delete a cache, run java
-Xshareclasses:[name=<name>],destroy. If you want to delete a 64-bit
non-compressed references cache, run java
-Xshareclasses:[name=<name>],destroy -Xnocompressedrefs.

You should tune the cache size for your specific application because the default is
unlikely to be the optimum size. To determine the optimum cache size, specify a
large cache, by using -Xscmx. Then, run the application and use the printStats
option to determine how much class data is stored. Add a small amount to the
value shown in printStats for contingency. Because classes can be loaded at any
time during the lifetime of the VM, it is best to do this analysis after the
application ends. However, a full cache does not have a negative affect on the
performance or capability of any VMs connected to it. Therefore, you can choose a
cache size that is smaller than required.

If a cache becomes full, a message is displayed on the command line of any VMs
that are using the verbose suboption. All VMs sharing the full cache can then load
any further classes into their own process memory. Classes in a full cache can still
be shared, but a full cache is read-only and cannot be updated with new classes.

Performance and memory consumption
Class data sharing is particularly useful on systems that use more than one JVM
running similar code; the system benefits from reduced real storage consumption.
It is also useful on systems that frequently start and shut down JVMs, which
benefit from the improvement in startup time.

The processor and memory usage required to create and populate a new cache is
minimal. The JVM startup cost in time for a single JVM is typically between 0 and
5% slower compared with a system not using class data sharing, depending on
how many classes are loaded. JVM startup time improvement with a populated
cache is typically between 10% and 40% faster compared with a system not using
class data sharing, depending on the operating system and the number of classes
loaded. Multiple JVMs running concurrently show greater overall startup time
benefits.

Duplicate classes are consolidated in the shared class cache. For example, class A
loaded from myClasses.jar and class A loaded from myOtherClasses.jar (with
identical content) is stored only once in the cache. The printAllStats utility shows
multiple entries for duplicated classes, with each entry pointing to the same class.

When you run your application with class data sharing, you can use the operating
system tools to see the reduction in virtual storage consumption.

Considerations and limitations of using class data sharing
Consider these factors when deploying class data sharing in a product and using
class data sharing in a development environment.

Chapter 7. Class data sharing between JVMs 59

Cache size limits
The maximum theoretical cache size is 2 GB. The size of the cache you can specify
is limited by the amount of available disk space and available virtual address
space.

The cache is limited by the following factors:
v Available disk space. A file is created to store the class data in a directory called

javasharedresources. This directory is created in the user's profile directory,
which is typically C:\Documents and Settings\<username>\Local
Settings\Application Data\javasharedresources\. The shared file is deleted
every time Windows is restarted.

v Available virtual address space. Because the virtual address space of a process is
shared between the shared classes cache and the Java heap, increasing the
maximum size of the Java heap reduces the size of the shared classes cache you
can create.

JVMTI RetransformClasses() is unsupported
You cannot run RetransformClasses() on classes loaded from the shared class
cache.

The JVM might throw the exception UnmodifiableClassException if you attempt to
run RetransformClasses(). It does not work because class file bytes are not
available for classes loaded from the shared class cache. If you must use
RetransformClasses(), ensure that the classes to be transformed are not loaded from
the shared class cache, or disable the shared class cache feature.

Runtime bytecode modification
Any JVM using a JVM Tool Interface (JVMTI) agent that can modify bytecode data
must use the modified=<modified_context> suboption if it wants to share the
modified classes with another JVM.

The modified context is a user-specified descriptor that describes the type of
modification being performed. The modified context partitions the cache so that all
JVMs running under the same context share a partition.

This partitioning allows JVMs that are not using modified bytecode to safely share
a cache with those that are using modified bytecode. All JVMs using a given
modified context must modify bytecode in a predictable, repeatable manner for
each class, so that the modified classes stored in the cache have the expected
modifications when they are loaded by another JVM. Any modification must be
predictable because classes loaded from the shared class cache cannot be modified
again by the agent.

If a JVMTI agent is used without a modification context, classes are still safely
shared by the JVM, but with a small affect on performance. Using a modification
context with a JVMTI agent avoids the need for extra checks and therefore has no
affect on performance. A custom ClassLoader that extends
java.net.URLClassLoader and modifies bytecode at load time without using JVMTI
automatically stores that modified bytecode in the cache, but the cache does not
treat the bytecode as modified. Any other VM sharing that cache loads the
modified classes. You can use the modified=<modification_context> suboption in the
same way as with JVMTI agents to partition modified bytecode in the cache. If a
custom ClassLoader needs to make unpredictable load-time modifications to
classes, that ClassLoader must not attempt to use class data sharing.

60 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

See Dealing with runtime bytecode modification for more detail on this topic.

Operating system limitations
You cannot share classes between 32-bit and 64-bit Java virtual machines (VM).
Temporary disk space must be available to hold cache information. The operating
system enforces cache permissions.

For operating systems that can run both 32-bit and 64-bit applications, class data
sharing is not allowed between 32-bit and 64-bit VMs. The listAllCaches
suboption lists 32-bit and 64-bit caches, depending on the address mode and
compressed references mode of the VM being used.

The shared class cache requires disk space to store identification information about
the caches that exist on the system. This information is in the user profile directory.
If the identification information directory is deleted, the VM cannot identify the
shared classes on the system and must re-create the cache.

The operating system enforces the permissions for accessing a shared class cache. If
you do not specify a cache name, the user name is appended to the default name
so that multiple users on the same system create their own caches.

Using SharedClassPermission
If a SecurityManager is being used with class data sharing and the running
application uses its own class loaders, you must grant these class loaders shared
class permissions before they can share classes.

You add shared class permissions to the java.policy file using the ClassLoader
class name (wildcards are permitted) and either “read”, “write”, or “read,write” to
determine the access granted. For example:
permission com.ibm.oti.shared.SharedClassPermission

"com.abc.customclassloaders.*", "read,write";

If a ClassLoader does not have the correct permissions, it is prevented from
sharing classes. You cannot change the permissions of the default bootstrap,
application, or extension class loaders.

Adapting custom class loaders to share classes
Any class loader that extends java.net.URLClassLoader can share classes without
modification. You must adopt class loaders that do not extend
java.net.URLClassLoader to share class data.

You must grant all custom class loaders shared class permissions if a
SecurityManager is being used; see “Using SharedClassPermission.” IBM provides
several Java interfaces for various types of custom class loaders, which allow the
class loaders to find and store classes in the shared class cache. These classes are in
the com.ibm.oti.shared package.

The API documentation for this package is available here: API documentation

See Using the Java Helper API for more information about how to use these
interfaces.

Chapter 7. Class data sharing between JVMs 61

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.api.60.doc/api_overview.dita

62 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

Chapter 8. Service and support for independent software
vendors

Contact points for service:

If you are entitled to services for the Program code pursuant to the IBM Solutions
Developer Program, contact the IBM Solutions Developer Program through your
usual method of access or on the Web at: http://www.ibm.com/partnerworld/.

If you have purchased a service contract (that is, the IBM Personal Systems
Support Line or equivalent service by country), the terms and conditions of that
service contract determine what services, if any, you are entitled to receive with
respect to the Program.

© Copyright IBM Corp. 2003, 2016 63

http://www.ibm.com/partnerworld/

64 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

Chapter 9. Accessibility

Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use information technology products successfully.

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

For example, you can operate the IBM SDK, Java Technology Edition, Version 6
without a mouse, by using only the keyboard.

Keyboard navigation

This product uses standard Microsoft Windows navigation keys.

For users who require keyboard navigation, a description of useful keystrokes for
Swing applications can be found here: Swing Key Bindings.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about
the commitment that IBM has to accessibility.

Keyboard traversal of JComboBox components in Swing
If you traverse the drop-down list of a JComboBox component with the cursor
keys, the button or editable field of the JComboBox does not change value until an
item is selected. This is the correct behavior for this release and improves
accessibility and usability by ensuring that the keyboard traversal behavior is
consistent with mouse traversal behavior.

Web Start accessibility
From Version 5.0, Java Web Start contains several accessibility and usability
improvements, including better support for screen readers and improved keyboard
navigation.

You can use the command line to start a Java application that is enabled for Web
Start. To change preference options, you must edit a configuration file, Application
Data\IBM\Java\Deployment\deployment.properties in the user's home directory.
Take a backup before you edit this file. Not all of the preferences that can be set in
the Java Application Cache Viewer are available in the configuration file.

© Copyright IBM Corp. 2003, 2016 65

http://www.ibm.com/developerworks/java/jdk/additional/IBM50KeyBindings.html
http://www.ibm.com/able

66 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

Chapter 10. General note about security

You can obtain JCE unrestricted jurisdiction policy files from the ibm.com® web
site. Documentation about the IBM security packages JCE, JCEFIPS, JSSE2,
JSSEFIPS, JGSS, JAAS, and hardware cryptography is available in the Security
documentation.

© Copyright IBM Corp. 2003, 2016 67

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk

68 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

Appendix. Appendixes

Reference information.

Command-line options
You can specify the options on the command line while you are starting Java. They
override any relevant environment variables. For example, using -cp <dir1> with
the Java command completely overrides setting the environment variable
CLASSPATH=<dir2>.

This chapter provides the following information:
v “Specifying command-line options”
v “General command-line options” on page 70
v “System property command-line options” on page 71
v “JVM command-line options” on page 83
v “JIT and AOT command-line options” on page 98
v “Garbage Collector command-line options” on page 101

Specifying command-line options
Although the command line is the traditional way to specify command-line
options, you can also pass options to the Java virtual machine (VM) by using
options files and environment variables.

The sequence of the Java options on the command line defines which options take
precedence during startup. Rightmost options have precedence over leftmost
options. In the following example, the -Xjit option takes precedence:
java -Xint -Xjit myClass

Use single or double quotation marks for command-line options only when
explicitly directed to do so. Single and double quotation marks have different
meanings on different platforms, operating systems, and shells. Do not use
'-X<option>' or "-X<option>". Instead, you must use -X<option>. For example, do
not use ’-Xmx500m’ and "-Xmx500m". Write this option as -Xmx500m.

At startup, the list of VM arguments is constructed in the following order, with the
lowest precedence first:
1. Environment variables that are described in ../com.ibm.java.doc.diagnostics.60/

diag/appendixes/env_var/env_jvm.dita are translated into command-line
options. For example, the following environment variable adds the parameter
-Xrs to the list of arguments:
set IBM_NOSIGHANDLER=<non_null_string>

2. The IBM_JAVA_OPTIONS environment variable. You can set command-line options
using this environment variable. The options that you specify with this
environment variable are added to the command line when a JVM starts in that
environment.
The environment variable can contain multiple blank-delimited argument
strings, but must not contain comments. For example:
set IBM_JAVA_OPTIONS="-Dmysysprop1=tcpip -Dmysysprop2=wait -Xdisablejavadump"

© Copyright IBM Corp. 2003, 2016 69

Note: The environment variable JAVA_TOOLS_OPTIONS is equivalent to
IBM_JAVA_OPTIONS and is available for compatibility with JVMTI.

3. Certain options are created automatically by the JVM. These specify arguments
such as search paths and version information.

4. Options that are specified on the command line. For example:
java -Dmysysprop1=tcpip -Dmysysprop2=wait -Xdisablejavadump MyJavaClass

The Java launcher adds some automatically generated arguments to this list,
such as the names of the main class.

You can also use the -Xoptionsfile parameter to specify JVM options. This
parameter can be used on the command line, or as part of the IBM_JAVA_OPTIONS
environment variable. The contents of an option file are expanded in place during
startup. For more information about the structure and contents of this type of file,
see “-Xoptionsfile” on page 89.

To troubleshoot startup problems, you can check which options are used by a JVM.
Append the following command-line option, and inspect the Javadump file that is
generated:
-Xdump:java:events=vmstart

Here is an extract from a Javadump file that shows the options that are used:
....

2CIUSERARG -Xdump:java:file=/home/test_javacore.txt,events=vmstop
2CIUSERARG -Dtest.cmdlineOption=1
2CIUSERARG -XXallowvmshutdown:true
2CIUSERARG -Xoptionsfile=test1.test_options_file

....

General command-line options
Use these options to print help on assert-related options, set the search path for
application classes and resources, print a usage method, identify memory leaks
inside the JVM, print the product version and continue, enable verbose output, and
print the product version.

-cp, -classpath <directories and compressed or .jar files separated by : (;
on Windows)>

Sets the search path for application classes and resources. If -classpath and -cp
are not used, and the CLASSPATH environment variable is not set, the user
classpath is, by default, the current directory (.).

-help, -?
Prints a usage message.

-fullversion
Prints the build and version information for the JVM.

-showversion
Prints product version and continues.

-verbose:<option>[,<option>...]
Enables verbose output. Separate multiple options using commas. These
options are available:

class
Writes an entry to stderr for each class that is loaded.

dynload
Provides detailed information as each bootstrap class is loaded by the JVM:
v The class name and package

70 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

v For class files that were in a .jar file, the name and directory path of the
.jar

v Details of the size of the class and the time taken to load the class

The data is written out to stderr. An example of the output on a Windows
platform follows:
<Loaded java/lang/String from C:\sdk\jre\lib\vm.jar>
<Class size 17258; ROM size 21080; debug size 0>
<Read time 27368 usec; Load time 782 usec; Translate time 927 usec>

gc Provide verbose garbage collection information.

init
Writes information to stderr describing JVM initialization and termination.

jni
Writes information to stderr describing the JNI services called by the
application and JVM.

sizes
Writes information to stderr describing the active memory usage settings.

stack
Writes information to stderr describing the Java and C stack usage for
each thread.

-version
Prints the full build and version information for the JVM.

System property command-line options
Use the system property command-line options to set up your system.

-D<name>=<value>
Sets a system property.

-Dcom.ibm.CORBA.CommTrace
This system property turns on wire tracing for the Object Request Broker (ORB),
which is also known as Comm tracing.

-Dcom.ibm.CORBA.CommTrace=true|false
When you set this option to true, every incoming and outgoing GIOP message
is sent to the trace log. You can set this property independently from
-Dcom.ibm.CORBA.Debug. Use this property if you want to look only at the flow
of information, and you do not want to debug the internal information. The
default value for this property is false.

Related reference:
“-Dcom.ibm.CORBA.Debug”
This system property enables debugging for the Object Request Broker (ORB) and
includes tracing options that control how much information is recorded.
“-Dcom.ibm.CORBA.Debug.Output” on page 72
This system property redirects Object Request Broker (ORB) trace output to a file,
which is known as a trace log.

-Dcom.ibm.CORBA.Debug
This system property enables debugging for the Object Request Broker (ORB) and
includes tracing options that control how much information is recorded.

-Dcom.ibm.CORBA.Debug=value
Where value is one of the following options:

Appendix. Appendixes 71

false No output is produced. This option is the default value.

true Messages and traces for the entire ORB code flow

Note: If you use this property without specifying a value, tracing is enabled.
Related reference:
“-Dcom.ibm.CORBA.Debug.Output”
This system property redirects Object Request Broker (ORB) trace output to a file,
which is known as a trace log.
“-Dcom.ibm.CORBA.CommTrace” on page 71
This system property turns on wire tracing for the Object Request Broker (ORB),
which is also known as Comm tracing.

-Dcom.ibm.CORBA.Debug.Output
This system property redirects Object Request Broker (ORB) trace output to a file,
which is known as a trace log.

-Dcom.ibm.CORBA.Debug.Output=filename
Where filename is the name you want to specify for your trace log. If this
property is not specified or the value of filename is empty, the file name
defaults to the following format:
orbtrc.DDMMYYYY.HHmm.SS.txt

Where:
v D = day
v M = month
v Y = year
v H = hour (24 hour format)
v M = minutes
v S = seconds

If the application or applet does not have the privilege that it requires to write
to a file, the trace entries go to stderr.

Related reference:
“-Dcom.ibm.CORBA.Debug” on page 71
This system property enables debugging for the Object Request Broker (ORB) and
includes tracing options that control how much information is recorded.
“-Dcom.ibm.CORBA.CommTrace” on page 71
This system property turns on wire tracing for the Object Request Broker (ORB),
which is also known as Comm tracing.

-Dcom.ibm.dbgmalloc
This option provides memory allocation diagnostic information for class library
native code.

-Dcom.ibm.dbgmalloc=true
When an application is started with this option, a javadump records the
amount of memory allocated by the class library components. You can use this
option together with the -Xcheck:memory option to obtain information about
class library call sites and their allocation sizes. Enabling this option has an
impact on throughput performance. The information does not include
allocation information from Abstract Windows Toolkit (AWT), ZLIB data
compression library, and libwrapper ASCII to EBCDIC conversion library.

72 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

-Dcom.ibm.HTTPSPNEGOCrossRealm
From Java 6 service refresh 10, the HTTP/SPNEGO Cross Realm support can be
enabled by setting this property to true.

-Dcom.ibm.HTTPSPNEGOCrossRealm=true
Support is turned off by default. When HTTP/SPNEGO Cross Realm support
is enabled, delegating credentials is turned off.

-Dcom.ibm.jsse2.renegotiate
If your Java application uses JSSE for secure communication, you can disable TLS
renegotiation by installing APAR IZ65239.

-Dcom.ibm.jsse2.renegotiate=[ALL | NONE | ABBREVIATED]

ALL Allow both abbreviated and unabbreviated (full) renegotiation
handshakes.

NONE
Allow no renegotiation handshakes. This value is the default setting.

ABBREVIATED
Allow only abbreviated renegotiation handshakes.

-Dcom.ibm.lang.management.verbose
Enables verbose information from java.lang.management operations to be written
to the output channel during VM operation.

-Dcom.ibm.lang.management.verbose
There are no options for this system property.

-Dcom.ibm.IgnoreMalformedInput
From Java 6 SR9, any invalid UTF8 or malformed byte sequences are replaced with
the standard unicode replacement character \uFFFD.

-Dcom.ibm.IgnoreMalformedInput=true
To retain the old behavior, where invalid UTF8 or malformed byte sequences
are ignored, set this system property to true.

-Dcom.ibm.mappedByteBufferForce
Setting this value to true forces data to be committed to disk during system failure.

-Dcom.ibm.mappedByteBufferForce=[true | false]
During system failure, the MappedByteBuffer.force API does not commit data
to disk, which prevents data integrity issues. Setting this value to true forces
data to be committed to disk during system failure. Because this setting can
cause performance degradation, this switch is not enabled by default.

-Dcom.ibm.rational.mvfs.checking
Use this property to improve the performance of Multi Version File System (MVFS)
file systems.

-Dcom.ibm.rational.mvfs.checking=[true | false]
The WinNTFilesystem methods getModifiedTime and getBooleanAttributes use
the windows methods API_wstati64() and _wfindfirsti64() instead of the
defaults. This property is not enabled by default because it can cause
performance degradation on local file systems. The property also causes
degradation on remote Windows shares where there is no Windows directory
cache for the remote file system.

Appendix. Appendixes 73

-Dcom.ibm.signalhandling.ignoreLogoff
This property controls the way the JVM handles a CTRL_LOGOFF_EVENT signal
when the JVM is running as an interactive Windows service.

-Dcom.ibm.signalhandling.ignoreLogoff=[true|false]
Windows issues a CTRL_LOGOFF_EVENT when a user logs out of an
interactive Windows service. By default, the JVM ends when this signal is
received. Setting this property to true prevents the JVM ending when a
CTRL_LOGOFF_EVENT signal is received. The default value for this property
is false.

-Dcom.ibm.streams.CloseFDWithStream
Determines whether the close() method of a stream object closes a native file
descriptor even if the descriptor is still in use by another stream object.

-Dcom.ibm.streams.CloseFDWithStream=[true | false]
Usually, you create a FileInputStream or FileOutputStream instance by passing
a String or a File object to the stream constructor method. Each stream then
has a separate file descriptor. However, you can also create a stream by using
an existing FileDescriptor instance, for example one that you obtain from a
RandomAccessFile instance, or another FileInputStream or FileOutputStream
instance. Multiple streams can then share the same file descriptor.

If you set this option to false, when you use the close() method of the stream,
the associated file descriptor is also closed only if it is not in use by any other
streams. If you set the option to true, the file descriptor is closed regardless of
any other streams that might still be using it.

The default setting is true.

Note: Before version 6 service refresh 14, the default behavior was to close the
file descriptor only when all the streams that were using it were also closed.
This system property exists so that you can revert to this previous default
behavior if necessary. This system property will be removed in a future release,
so you should adjust your applications to use the new default behavior before
you upgrade to a later release.

-Dcom.ibm.tools.attach.enable
Enable the Attach API for this application.

-Dcom.ibm.tools.attach.enable=yes
The Attach API allows your application to connect to a virtual machine. Your
application can then load an agent application into the virtual machine. The
agent can be used to perform tasks such as monitoring the virtual machine
status.

-Dcom.ibm.UseCLDR16
This property reverts behavior to an earlier release.

-Dcom.ibm.UseCLDR16
From IBM SDK, Java Technology Edition, Version 6 service refresh 10, changes
are made to the locale translation files to make them consistent with Oracle
JDK 6. To understand the differences in detail, see http://www.ibm.com/
support/docview.wss?uid=swg21568667. Include the -Dcom.ibm.UseCLDR16
system property on the command-line to revert to the locale translation files
used in earlier releases.

74 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|

http://www.ibm.com/support/docview.wss?uid=swg21568667
http://www.ibm.com/support/docview.wss?uid=swg21568667

-Dcom.ibm.xtq.processor.overrideSecureProcessing
This system property affects the XSLT processing of extension functions or
extension elements when Java security is enabled.

Purpose

From IBM SDK, Java Technology Edition, Version 6 service refresh 14, the use of
extension functions or extension elements is not allowed when Java security is
enabled. This change is introduced to enhance security. The system property can be
used to revert to the behavior in earlier releases.

Parameters

com.ibm.xtq.processor.overrideSecureProcessing=true
To revert to the behavior in earlier releases of the IBM SDK, set this system
property to true.

-Dcom.ibm.zipfile.closeinputstreams
The Java.util.zip.ZipFile class allows you to create InputStreams on files held in a
compressed archive.

-Dcom.ibm.zipfile.closeinputstreams=true
Under some conditions, using ZipFile.close() to close all InputStreams that
have been opened on the compressed archive might result in a
56-byte-per-InputStream native memory leak. Setting the
-Dcom.ibm.zipfile.closeinputstreams=true forces the JVM to track and close
InputStreams without the memory impact caused by retaining native-backed
objects. Native-backed objects are objects that are stored in native memory,
rather than the Java heap. By default, the value of this system property is not
enabled.

-Dfile.encoding
Use this property to define the file encoding that is required.

-Dfile.encoding=value
Where value defines the file encoding that is required.

By default the IBM GBK converter follows Unicode 3.0 standards. To force the
IBM GBK converter to follow Unicode 2.0 standards, use a value of bestfit936.

-Dibm.jvm.bootclasspath
The value of this property is used as an additional search path.

-Dibm.jvm.bootclasspath
The value of this property is used as an additional search path, which is
inserted between any value that is defined by -Xbootclasspath/p: and the
bootclass path. The bootclass path is either the default or the one that you
defined by using the -Xbootclasspath: option.

-Dibm.stream.nio
This option addresses the ordering of IO and NIO converters.

-Dibm.stream.nio=[true | false]
When this option is set to true, the NIO converters are used instead of the IO
converters. By default the IO converters are used.

-Djava.compiler
Disables the Java compiler by setting to NONE.

Appendix. Appendixes 75

|
|
|

|

|
|
|
|

|

|
|
|

|

|
|

-Djava.compiler=[NONE | j9jit<vm_version>]
Enable JIT compilation by setting to j9jit<vm_version> (Equivalent to –Xjit).

-Djava.util.Arrays.useLegacyMergeSort
Changes the implementation of java.util.Collections.sort(list, comparator) in this
release.

The Java SE 6 implementation of java.util.Collections.sort(list, comparator) relies on
the Comparator function, which implements the conditions greater than, less than,
and equal. However, the Java SE 5.0 implementation of
java.util.Collections.sort(list, comparator) can accept the Comparator function,
which implements only the conditions greater than and less than. From IBM SDK,
Java Technology Edition, Version 6 service refresh 16 fix pack 1 onwards, you can
switch between the Java SE 5.0 and Java SE 6 implementation.

-Djava.util.Arrays.useLegacyMergeSort=[true | false]
Setting the value to true changes the Comparator function to the Java SE 5.0
implementation. The default for this setting is false.

-Djavax.xml.namespace.QName.useCompatibleHashCodeAlgorithm
Use this property to turn off an enhanced hashing algorithm for
javax.xml.namespace.QName.hashCode().

-Djavax.xml.namespace.QName.useCompatibleHashCodeAlgorithm=1.0
From Java 6 SR11 an enhanced hashing algorithm is used for
javax.xml.namespace.QName.hashCode(). This algorithm can change the
iteration order of items returned from hash maps. For compatibility, you can
restore the earlier hashing algorithm by setting the system property
-Djavax.xml.namespace.QName.useCompatibleHashCodeAlgorithm=1.0.

-Djdk.map.althashing.threshold
This system property controls the use of an enhanced hashing algorithm for
hashed maps.

-Djdk.map.althashing.threshold=value
This alternative hashing algorithm is used for string keys when a hashed data
structure has a capacity larger than value.

A value of 1 ensures that this algorithm is always used, regardless of the
hashed map capacity. A value of -1 prevents the use of this algorithm, which is
the default value.

The hashed map structures affected by this threshold are: java.util.HashMap,
java.util.Hashtable, java.util.LinkedHashMap, java.util.WeakHashMap, and
java.util.concurrent.ConcurrentHashMap.

The capacity of a hashed map is related to the number of entries in the map,
multiplied by the load factor. Because the capacity of a hashed map is rounded
up to the next power of two, setting the threshold to intermediate values has
no affect on behavior. For example, threshold values of 600, 700, and 1000 have
the same effect. However, values of 1023 and 1024 cause a difference in
behavior. For a more detailed description of the capacity and load factor, see
http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html.

When entries are removed from a hashed map the capacity does not shrink.
Therefore, if the map ever exceeds the threshold to use alternative hashing for
Strings, the map always uses alternative hashing for Strings. This behavior
does not change, even if entries are later removed or the map is emptied using
clear().

76 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html

The enhanced hashing algorithm is available from Java 6 SR11

-Djdk.xml.entityExpansionLimit
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the number of entity expansions in an XML document.

-Djdk.xml.entityExpansionLimit=value

where value is a positive integer. The default value is 64,000.

A value of 0 or a negative number sets no limit.

You can also set this limit by adding the following line to your jaxp.properties
file:
jdk.xml.entityExpansionLimit=value

Related reference:
“-Djdk.xml.maxGeneralEntitySizeLimit”
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a general entity.
“-Djdk.xml.maxOccur” on page 78
This option provides limits for Java API for XML processing (JAXP). This option
defines the maximum number of content model nodes that can be created in a
grammar.
“-Djdk.xml.maxParameterEntitySizeLimit” on page 79
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a parameter entity.
“-Djdk.xml.maxXMLNameLimit” on page 79
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the length of XML names in XML documents.
“-Djdk.xml.totalEntitySizeLimit” on page 81
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the total size of all entities, including general and parameter
entities.
“-Djdk.xml.resolveExternalEntities” on page 80
This option provides limits for Java API for XML processing (JAXP). Use this
option to control whether external entities are resolved in an XML document.

-Djdk.xml.maxGeneralEntitySizeLimit
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a general entity.

To protect an application from malformed XML, set this value to the minimum size
possible.

-Djdk.xml.maxGeneralEntitySizeLimit=value

Where value is the maximum size that is allowed for a general entity. The
default value is 0.

A value of 0 or a negative number sets no limits.

You can also set this limit by adding the following line to your jaxp.properties
file:
jdk.xml.maxGeneralEntitySizeLimit=value

Related reference:
“-Djdk.xml.entityExpansionLimit”
This option provides limits for Java API for XML processing (JAXP). Use this

Appendix. Appendixes 77

|

|
|
|

|

|

|

|
|

|

|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|

|

|
|

|

|
|

|

|

|
|

option to limit the number of entity expansions in an XML document.
“-Djdk.xml.maxOccur”
This option provides limits for Java API for XML processing (JAXP). This option
defines the maximum number of content model nodes that can be created in a
grammar.
“-Djdk.xml.maxParameterEntitySizeLimit” on page 79
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a parameter entity.
“-Djdk.xml.maxXMLNameLimit” on page 79
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the length of XML names in XML documents.
“-Djdk.xml.totalEntitySizeLimit” on page 81
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the total size of all entities, including general and parameter
entities.
“-Djdk.xml.resolveExternalEntities” on page 80
This option provides limits for Java API for XML processing (JAXP). Use this
option to control whether external entities are resolved in an XML document.

-Djdk.xml.maxOccur
This option provides limits for Java API for XML processing (JAXP). This option
defines the maximum number of content model nodes that can be created in a
grammar.

When building a grammar for a W3C XML schema, use this option to limit the
number of content model nodes that can be created when the schema defines
attributes that can occur multiple times.

-Djdk.xml.maxOccur=value

Where value is a positive integer. The default value is 5,000.

A value of 0 or a negative number sets no limits.

You can also set this limit by adding the following line to your jaxp.properties
file:
jdk.xml.maxoccur=value

Related reference:
“-Djdk.xml.entityExpansionLimit” on page 77
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the number of entity expansions in an XML document.
“-Djdk.xml.maxGeneralEntitySizeLimit” on page 77
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a general entity.
“-Djdk.xml.maxParameterEntitySizeLimit” on page 79
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a parameter entity.
“-Djdk.xml.maxXMLNameLimit” on page 79
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the length of XML names in XML documents.
“-Djdk.xml.totalEntitySizeLimit” on page 81
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the total size of all entities, including general and parameter
entities.

78 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|

|

|

|
|

|

|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

“-Djdk.xml.resolveExternalEntities” on page 80
This option provides limits for Java API for XML processing (JAXP). Use this
option to control whether external entities are resolved in an XML document.

-Djdk.xml.maxParameterEntitySizeLimit
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a parameter entity.

To protect an application from malformed XML, set this value to the minimum size
possible.

-Djdk.xml.maxParameterEntitySizeLimit=value

Where value is the maximum size that is allowed for a parameter entity. The
default value is 0.

A value of 0 or a negative number sets no limits.

You can also set this limit by adding the following line to your jaxp.properties
file:
jdk.xml.maxParameterEntitySizeLimit=value

Related reference:
“-Djdk.xml.entityExpansionLimit” on page 77
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the number of entity expansions in an XML document.
“-Djdk.xml.maxGeneralEntitySizeLimit” on page 77
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a general entity.
“-Djdk.xml.maxOccur” on page 78
This option provides limits for Java API for XML processing (JAXP). This option
defines the maximum number of content model nodes that can be created in a
grammar.
“-Djdk.xml.maxXMLNameLimit”
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the length of XML names in XML documents.
“-Djdk.xml.totalEntitySizeLimit” on page 81
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the total size of all entities, including general and parameter
entities.
“-Djdk.xml.resolveExternalEntities” on page 80
This option provides limits for Java API for XML processing (JAXP). Use this
option to control whether external entities are resolved in an XML document.

-Djdk.xml.maxXMLNameLimit
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the length of XML names in XML documents.

-Djdk.xml.maxXMLNameLimit=value

Where value is a positive integer.

A value of 0 or a negative number sets no limits. The default value is 0.

You can also set this limit by adding the following line to your jaxp.properties
file:
jdk.xml.maxXMLNameLimit=value

Related reference:

Appendix. Appendixes 79

|
|
|

|
|
|

|
|

|

|
|

|

|
|

|

|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|

|

|

|
|

|

|

“-Djdk.xml.entityExpansionLimit” on page 77
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the number of entity expansions in an XML document.
“-Djdk.xml.maxGeneralEntitySizeLimit” on page 77
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a general entity.
“-Djdk.xml.maxOccur” on page 78
This option provides limits for Java API for XML processing (JAXP). This option
defines the maximum number of content model nodes that can be created in a
grammar.
“-Djdk.xml.maxParameterEntitySizeLimit” on page 79
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a parameter entity.
“-Djdk.xml.resolveExternalEntities”
This option provides limits for Java API for XML processing (JAXP). Use this
option to control whether external entities are resolved in an XML document.
“-Djdk.xml.totalEntitySizeLimit” on page 81
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the total size of all entities, including general and parameter
entities.

-Djdk.xml.resolveExternalEntities
This option provides limits for Java API for XML processing (JAXP). Use this
option to control whether external entities are resolved in an XML document.

-Djdk.xml.resolveExternalEntities=value

Where value is boolean. The default value is true.

A value of false turns off the resolution of XML external entities.

You can also set this limit by adding the following line to your jaxp.properties
file:
jdk.xml.resolveExternalEntities=value

Related reference:
“-Djdk.xml.entityExpansionLimit” on page 77
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the number of entity expansions in an XML document.
“-Djdk.xml.maxGeneralEntitySizeLimit” on page 77
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a general entity.
“-Djdk.xml.maxOccur” on page 78
This option provides limits for Java API for XML processing (JAXP). This option
defines the maximum number of content model nodes that can be created in a
grammar.
“-Djdk.xml.maxXMLNameLimit” on page 79
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the length of XML names in XML documents.
“-Djdk.xml.totalEntitySizeLimit” on page 81
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the total size of all entities, including general and parameter
entities.
“-Djdk.xml.maxParameterEntitySizeLimit” on page 79
This option provides limits for Java API for XML processing (JAXP). Use this

80 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|

|

|

|
|

|

|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

option to limit the maximum size of a parameter entity.

-Djdk.xml.totalEntitySizeLimit
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the total size of all entities, including general and parameter
entities.

-Djdk.xml.totalEntitySizeLimit=value

Where value is the collective size of all entities. The default value is 5x10^7 (50
000 000).

A value of 0 or a negative number sets no limits.

You can also set this limit by adding the following line to your jaxp.properties
file:
jdk.xml.totalEntitySizeLimit=value

Related reference:
“-Djdk.xml.entityExpansionLimit” on page 77
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the number of entity expansions in an XML document.
“-Djdk.xml.maxGeneralEntitySizeLimit” on page 77
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a general entity.
“-Djdk.xml.maxOccur” on page 78
This option provides limits for Java API for XML processing (JAXP). This option
defines the maximum number of content model nodes that can be created in a
grammar.
“-Djdk.xml.maxParameterEntitySizeLimit” on page 79
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the maximum size of a parameter entity.
“-Djdk.xml.maxXMLNameLimit” on page 79
This option provides limits for Java API for XML processing (JAXP). Use this
option to limit the length of XML names in XML documents.
“-Djdk.xml.resolveExternalEntities” on page 80
This option provides limits for Java API for XML processing (JAXP). Use this
option to control whether external entities are resolved in an XML document.

-Dsun.awt.keepWorkingSetOnMinimize
The -Dsun.awt.keepWorkingSetOnMinimize=true system property stops the JVM
trimming an application when it is minimized.

-Dsun.awt.keepWorkingSetOnMinimize=true
When a Java application using the Abstract Windowing Toolkit (AWT) is
minimized, the default behavior is to “trim” the “working set”. The working
set is the application memory stored in RAM. Trimming means that the
working set is marked as being available for swapping out if the memory is
required by another application. The advantage of trimming is that memory is
available for other applications. The disadvantage is that a “trimmed”
application might experience a delay as the working set memory is brought
back into RAM.

The default behavior is to trim an application when it is minimized.

-Dsun.net.client.defaultConnectTimeout
Specifies the default value for the connect timeout for the protocol handlers used
by the java.net.URLConnection class.

Appendix. Appendixes 81

|

|
|
|
|

|

|
|

|

|
|

|

|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

-Dsun.net.client.defaultConnectTimeout=<value in milliseconds>
The default value set by the protocol handlers is -1, which means that no
timeout is set.

When a connection is made by an applet to a server and the server does not
respond properly, the applet might seem to hang. The delay might also cause
the browser to hang. The apparent hang occurs because there is no network
connection timeout. To avoid this problem, the Java Plug-in has added a
default value to the network timeout of 2 minutes for all HTTP connections.
You can override the default by setting this property.

-Dsun.net.client.defaultReadTimeout
Specifies the default value for the read timeout for the protocol handlers used by
the java.net.URLConnection class when reading from an input stream when a
connection is established to a resource.

-Dsun.net.client.defaultReadTimeout=<value in milliseconds>
The default value set by the protocol handlers is -1, which means that no
timeout is set.

-Dsun.nio.MaxDirectMemorySize
Limits the native memory size for nio Direct Byte Buffer objects to the value
specified.

-Dsun.nio.MaxDirectMemorySize=<value>
Specify <value> in bytes.

-Dsun.reflect.inflationThreshold
Controls inflation from the JNI implementation of reflection to the Java
implementation of reflection.

When your application uses Java reflection, the JVM has two methods of accessing
the information on the class being reflected. It can use a JNI accessor, or a Java
bytecode accessor. If your application uses reflection extensively, you might want
to force the JVM to use the JNI accessor because the Java bytecode accessor can use
a significant amount of native memory.

-Dsun.reflect.inflationThreshold=<value>
Where a <value> sets the number of times to use the JNI accessor before the
JVM changes to use the Java bytecode accessor, a process that is known as
inflation. A value of 0 causes reflection never to inflate from the JNI accessor to
the Java bytecode accessor.

Note: The Oracle implementation of this system property is different. Setting
the value to 0 causes reflection to inflate from the JNI implementation of
reflection to the Java implementation of reflection after the first usage. If you
want to force the use of the Java implementation of reflection, use
-Dsun.reflect.noInflation=true.

-Dsun.rmi.transport.tcp.connectionPool
Enables thread pooling for the RMI ConnectionHandlers in the TCP transport layer
implementation.

-Dsun.rmi.transport.tcp.connectionPool=val
val is either true or a value that is not null.

-Dswing.useSystemFontSettings
This option addresses compatibility problems for Swing programs.

82 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

-Dswing.useSystemFontSettings=[false]
By default, Swing programs running with the Windows Look and Feel render
with the system font set by the user instead of a Java-defined font. As a result,
fonts differ from the fonts in earlier releases. This option addresses
compatibility problems like these for programs that depend on the old
behavior. By setting this option, v1.4.1 fonts and those of earlier releases are
the same for Swing programs running with the Windows Look and Feel.

JVM command-line options
Use these options to configure your JVM. The options prefixed with -X are
nonstandard.

Options that relate to the JIT are listed under “JIT and AOT command-line
options” on page 98. Options that relate to the Garbage Collector are listed under
“Garbage Collector command-line options” on page 101.

-X
Displays help on nonstandard options.

-X Displays help on nonstandard options.

-Xaggressive
Enables performance optimizations.

-Xaggressive
Enables performance optimizations that are expected to be the default in future
releases.

-Xargencoding
Include Unicode escape sequences in the argument list.

-Xargencoding
You can use the Unicode escape sequences in the argument list that you pass
to this option. To specify a Unicode character, use escape sequences in the form
\u####, where # is a hexadecimal digit (0 - 9, A to F).

-Xargencoding:utf8
Use utf8 encoding.

-Xargencoding:latin
Use ISO8859_1 encoding.

To specify a class that is called HelloWorld and use Unicode encoding for both
capital letters, specify this command:
java -Xargencoding ’\u0048ello\u0057orld’

-Xbootclasspath
Sets the search path for bootstrap classes and resources.

-Xbootclasspath:<directories and compressed or Java archive files separated
by : (; on Windows)>

The default is to search for bootstrap classes and resources in the internal VM
directories and .jar files.

-Xbootclasspath/a:

Appends to the end of the search path for bootstrap classes.

Appendix. Appendixes 83

-Xbootclasspath/a:<directories and compressed or Java archive files
separated by : (; on Windows)>

Appends the specified directories, compressed files, or .jar files to the end of
the bootstrap class path. The default is to search for bootstrap classes and
resources in the internal VM directories and .jar files.

-Xbootclasspath/p:

Adds a prefix to the search path for bootstrap classes.

-Xbootclasspath/p:<directories and compressed or Java archive files
separated by : (; on Windows)>

Adds a prefix of the specified directories, compressed files, or Java archive files
to the front of the bootstrap class path. Do not deploy applications that use the
-Xbootclasspath: or the -Xbootclasspath/p: option to override a class in the
standard API. The reason is that such a deployment contravenes the Java 2
Runtime Environment binary code license. The default is to search for
bootstrap classes and resources in the internal VM directories and .jar files.

-Xcheck
You can use the -Xcheck option to run checks during JVM startup, such as memory
checks or checks on JNI functions.

-Xcheck:<option>
The options available are detailed in separate topics.

-Xcheck:classpath:

Displays a warning message if an error is discovered in the class path.

-Xcheck:classpath
Checks the classpath and reports if an error is discovered; for example, a
missing directory or JAR file.

-Xcheck:gc:

Runs additional checks on garbage collection.

-Xcheck:gc[:<scan options>][:<verify options>][:<misc options>]
By default, no checks are made. See the output of -Xcheck:gc:help for more
information.

-Xcheck:jni:

Runs additional checks for JNI functions.

-Xcheck:jni[:help][:<option>=<value>]
This option is equivalent to -Xrunjnichk. By default, no checks are made.

-Xcheck:memory:

Identifies memory leaks inside the JVM.

-Xcheck:memory[:<option>]
Identifies memory leaks inside the JVM using strict checks that cause the JVM
to exit on failure. If no option is specified, all is used by default. The available
options are as follows:

all
Enables checking of all allocated and freed blocks on every free and

84 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

allocate call. This check of the heap is the most thorough. It typically
causes the JVM to exit on nearly all memory-related problems soon after
they are caused. This option has the greatest affect on performance.

callsite=<number of allocations>

Displays callsite information every <number of allocations>. De-allocations
are not counted. Callsite information is presented in a table with separate
information for each callsite. Statistics include:
v The number and size of allocation and free requests since the last report.
v The number of the allocation request responsible for the largest

allocation from each site.

Callsites are presented as sourcefile:linenumber for C code and assembly
function name for assembler code.

Callsites that do not provide callsite information are accumulated into an
"unknown" entry.

failat=<number of allocations>
Causes memory allocation to fail (return NULL) after <number of
allocations>. Setting <number of allocations> to 13 causes the 14th allocation
to return NULL. De-allocations are not counted. Use this option to ensure
that JVM code reliably handles allocation failures. This option is useful for
checking allocation site behavior rather than setting a specific allocation
limit.

ignoreUnknownBlocks
Ignores attempts to free memory that was not allocated using the
-Xcheck:memory tool. Instead, the -Xcheck:memory statistics that are
printed out at the end of a run indicates the number of “unknown” blocks
that were freed.

mprotect=<top|bottom>
Locks pages of memory on supported platforms, causing the program to
stop if padding before or after the allocated block is accessed for reads or
writes. An extra page is locked on each side of the block returned to the
user.

If you do not request an exact multiple of one page of memory, a region on
one side of your memory is not locked. The top and bottom options control
which side of the memory area is locked. top aligns your memory blocks
to the top of the page (lower address), so buffer underruns result in an
application failure. bottom aligns your memory blocks to the bottom of the
page (higher address) so buffer overruns result in an application failure.

Standard padding scans detect buffer underruns when using top and
buffer overruns when using bottom.

nofree
Keeps a list of blocks that are already used instead of freeing memory. This
list, and the list of currently allocated blocks, is checked for memory
corruption on every allocation and deallocation. Use this option to detect a
dangling pointer (a pointer that is "dereferenced" after its target memory is
freed). This option cannot be reliably used with long-running applications
(such as WebSphere Application Server), because “freed” memory is never
reused or released by the JVM.

noscan
Checks for blocks that are not freed. This option has little effect on

Appendix. Appendixes 85

performance, but memory corruption is not detected. This option is
compatible only with subAllocator, callsite, and callsitesmall.

quick
Enables block padding only and is used to detect basic heap corruption.
Every allocated block is padded with sentinel bytes, which are verified on
every allocate and free. Block padding is faster than the default of checking
every block, but is not as effective.

skipto=<number of allocations>
Causes the program to check only on allocations that occur after <number
of allocations>. De-allocations are not counted. Use this option to speed up
JVM startup when early allocations are not causing the memory problem.
The JVM performs approximately 250+ allocations during startup.

subAllocator[=<size in MB>]
Allocates a dedicated and contiguous region of memory for all JVM
allocations. This option helps to determine if user JNI code or the JVM is
responsible for memory corruption. Corruption in the JVM subAllocator
heap suggests that the JVM is causing the problem; corruption in the
user-allocated memory suggests that user code is corrupting memory.
Typically, user and JVM allocated memory are interleaved.

zero
Newly allocated blocks are set to 0 instead of being filled with the
0xE7E7xxxxxxxxE7E7 pattern. Setting these blocks to 0 helps you to
determine whether a callsite is expecting zeroed memory, in which case the
allocation request is followed by memset(pointer, 0, size).

Note: The -Xcheck:memory option cannot be used in the -Xoptionsfile.

-Xclassgc
Enables dynamic unloading of classes by the JVM. Garbage collection of class
objects occurs only on class loader changes.

-Xclassgc
Dynamic unloading is the default behavior. To disable dynamic class
unloading, use the -Xnoclassgc option.

-Xcompressedrefs
Enables the use of compressed references.

-Xcompressedrefs
(64-bit only) To disable compressed references, use the
-Xnocompressedreferences option. For more information, see Compressed
references.

Compressed references are disabled by default.

You cannot include this option in an options file. You must specify this option
on the command line, or by using the IBM_JAVA_OPTIONS environment variable.

-Xdbg
Loads debugging libraries to support the remote debugging of applications.

-Xdbg:<options>
This option is deprecated in the IBM SDK, Java Technology Edition, Version 6.
By default, the debugging libraries are not loaded, and the VM instance is not
enabled for debug.

86 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

The preferred method to enable the debugger is -agentlib:jdwp=<options>. For
more information about using the Java debugger, see the IBM SDK, Java
Technology Edition, Version 6 user guide.

-Xdiagnosticscollector
Enables the Diagnostics Collector.

-Xdiagnosticscollector[:settings=<filename>]
See The Diagnostics Collector for more information. The settings option allows
you to specify a different Diagnostics Collector settings file to use instead of
the default dc.properties file in the JRE.

-Xdisablejavadump
Turns off Javadump generation on errors and signals.

-Xdisablejavadump
By default, Javadump generation is enabled.

-Xdump
Use the -Xdump option to add and remove dump agents for various JVM events,
update default dump settings (such as the dump name), and limit the number of
dumps that are produced.

-Xdump
See Using dump agents for more information.

-Xenableexplicitgc
This options tells the VM to trigger a garbage collection when a call is made to
System.gc().

-Xenableexplicitgc
Signals to the VM that calls to System.gc() trigger a garbage collection. This
option is enabled by default.

-Xfastresolve
Tune performance by improving the resolution time for classes.

-Xfastresolve<n>
This option is used to tune performance by improving the resolution time for
classes when the field count exceeds the threshold specified by <n>. If profiling
tools show significant costs in field resolution, change the threshold until the
costs are reduced. If you enable this option, additional memory is used when
the threshold is exceeded.

-Xfuture
Turns on strict class-file format checks.

-Xfuture
Use this flag when you are developing new code because stricter checks will
become the default in future releases. By default, strict format checks are
disabled.

-Xiss
Sets the initial stack size for Java threads.

-Xiss<size>
By default, the stack size is set to 2 KB. Use the -verbose:sizes option to
output the value that the VM is using.

Appendix. Appendixes 87

-Xjarversion
Produces output information about the version of each .jar file.

-Xjarversion
Produces output information about the version of each .jar file in the class
path, the boot class path, and the extensions directory. Version information is
taken from the Implementation-Version and Build-Level properties in the
manifest of the .jar file.

Note: The -Xjarversion option cannot be used in the -Xoptionsfile.

-Xjni
Sets JNI options.

-Xjni:<suboptions>
You can use the following suboption with the -Xjni option:

-Xjni:arrayCacheMax=[<size in bytes>|unlimited]
Sets the maximum size of the array cache. The default size is 8096 bytes.

-Xlinenumbers
Displays line numbers in stack traces for debugging.

-Xlinenumbers
See also -Xnolinenumbers. By default, line numbers are on.

-Xlog
Enables message logging.

-Xlog

To prevent message logging, use the -Xlog:none option. By default, logging is
enabled. This option is available from Java 6 SR5. See JVM Messages.

-Xlp
Requests the JVM to allocate the Java object heap and JIT code cache memory with
large pages.

-Xlp[<size>]
Windows: Requests the JVM to allocate the Java object heap with large pages.
This command is available only on Windows Server 2003 and later, and
Windows Vista, and later releases.

For more information, see “Configuring large page memory allocation” on
page 39.

All platforms: To obtain the large page sizes available and the current setting,
use the -verbose:sizes option. Note the current settings are the requested
sizes and not the sizes obtained. For object heap size information, check the
-verbose:gc output.

The JVM ends if there are insufficient operating system resources to satisfy the
request. However, an error message is not issued. This limitation and a
workaround for verifying the page size that is used can be found in Known
limitations.

-Xmso
Sets the initial stack size for operating system threads.

-Xmso<size>
The default value can be determined by running the command:
java -verbose:sizes

88 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

The maximum value for the stack size varies according to platform and
specific machine configuration. If you exceed the maximum value, a
java/lang/StackOverflowError message is reported.

-Xnoagent
Disables support for the old JDB debugger.

-Xnoagent
Disables support for the old JDB debugger.

-Xnoclassgc
Disables class garbage collection.

-Xnoclassgc
This option switches off garbage collection of storage associated with Java
technology classes that are no longer being used by the JVM. The default
behavior is as defined by -Xclassgc. Enabling this option is not recommended
except under the direction of the IBM support team. The reason is the option
can cause unlimited native memory growth, leading to out-of-memory errors.

-Xnocompressedrefs
Disables the use of compressed references.

-Xnocompressedrefs
(64-bit only)

This option disables the use of compressed references.

You cannot include this option in an options file. You must specify this option
on the command line, or by using the IBM_JAVA_OPTIONS environment variable.

To enable compressed references, use the -Xcompressedreferences option. For
more information, see Compressed references.

-Xnolinenumbers
Disables the line numbers for debugging.

-Xnolinenumbers
See also -Xlinenumbers. By default, line number are on.

-Xnosigcatch
Disables JVM signal handling code.

-Xnosigcatch
See also -Xsigcatch. By default, signal handling is enabled.

-Xnosigchain
Disables signal handler chaining.

-Xnosigchain
See also -Xsigchain. By default, the signal handler chaining is enabled.

-Xoptionsfile
Specifies a file that contains VM options and definitions.

-Xoptionsfile=<file>
where <file> contains options that are processed as if they had been entered
directly as command-line options. By default, a user option file is not used.

Here is an example of an options file:

Appendix. Appendixes 89

#My options file
-X<option1>
-X<option2>=\
<value1>,\
<value2>
-D<sysprop1>=<value1>

The options file does not support these options:
v -assert

v -fullversion

v -help

v -showversion

v -version

v -Xcompressedrefs

v -Xcheck:memory

v -Xjarversion

v -Xoptionsfile

Although you cannot use -Xoptionsfile recursively within an options file, you
can use -Xoptionsfile multiple times on the same command line to load more
than one options files.

Some options use quoted strings as parameters. Do not split quoted strings
over multiple lines using the forward slash line continuation character (\). The
Yen symbol (¥) is not supported as a line continuation character. For example,
the following example is not valid in an options file:
-Xevents=vmstop,exec="cmd /c \
echo %pid has finished."

The following example is valid in an options file:
-Xevents=vmstop, \
exec="cmd /c echo %pid has finished."

Related information:
“Specifying command-line options” on page 69
Although the command line is the traditional way to specify command-line
options, you can also pass options to the Java virtual machine (VM) by using
options files and environment variables.
TITLE, GPINFO, and ENVINFO sections

-Xoss
Sets the maximum Java stack size for any thread.

-Xoss<size>
Recognized but deprecated. Use -Xss and -Xmso instead. The maximum value
for the stack size varies according to platform and specific machine
configuration. If you exceed the maximum value, a java/lang/
OutOfMemoryError message is reported.

-Xrdbginfo
Loads the remote debug information server with the specified host and port.

-Xrdbginfo:<host>:<port>
By default, the remote debug information server is disabled.

-Xrs
Disables signal handling in the JVM.

90 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

-Xrs
Setting -Xrs prevents the Java run time environment from handling any
internally or externally generated signals such as SIGSEGV and SIGABRT. Any
signals that are raised are handled by the default operating system handlers.
Disabling signal handling in the JVM reduces performance by approximately
2-4%, depending on the application.

-Xrs:sync
On Windows systems, hardware exceptions are not handled by the JVM
when this option is specified. However, the Windows
CTRL_BREAK_EVENT signal, triggered by the Ctrl-Break key combination,
is still handled by the JVM. As with -Xrs, the use of -Xrs:sync reduces
performance by approximately 2-4%, depending on the application.

Note: Setting this option prevents dumps being generated by the JVM for signals
such as SIGSEGV and SIGABRT, because the JVM is no longer intercepting these
signals.

-Xrun
This option loads helper libraries, but has been superseded by the -agentlib
option.

-Xrun<library name>[:<options>]
This option has been superseded; use the -agentlib option instead. For more
information about -agentlib, see Using the JVMTI.

-Xrun loads helper libraries. To load multiple libraries, specify it more than
once on the command line. Examples of these libraries are:

-Xrunhprof[:help] | [:<option>=<value>, ...]
Performs heap, CPU, or monitor profiling.

-Xrunjdwp[:help] | [:<option>=<value>, ...]
Loads debugging libraries to support the remote debugging of
applications. This option is the same as -Xdbg.

-Xrunjnichk[:help] | [:<option>=<value>, ...]
Deprecated. Use -Xcheck:jni instead.

-Xscmx
Specifies cache size.

-Xscmx<size>
This option applies only if a cache is being created and no cache of the same
name exists. The default cache size is platform-dependent. You can find out the
size value being used by adding -verbose:sizes as a command-line argument.
Minimum cache size is 4 KB. Maximum cache size is platform-dependent. The
size of cache that you can specify is limited by the amount of physical memory
and paging space available to the system. The virtual address space of a
process is shared between the shared classes cache and the Java heap.
Increasing the maximum size of the Java heap reduces the size of the shared
classes cache that you can create.

-XselectiveDebug
Enables selective debugging.

-XselectiveDebug
Use the com.ibm.jvm.Debuggable annotation to mark classes and methods that
must be available for debugging. The JVM optimizes methods that do not need

Appendix. Appendixes 91

debugging to provide better performance in a debugging environment. See the
User Guide for your platform for more information.

-Xshareclasses
Enables class sharing. This option can take a number of suboptions, some of which
are cache utilities.

-Xshareclasses:<suboptions>

Cache utilities perform the required operation on the specified cache, without
starting the VM. You can combine multiple suboptions, separated by commas,
but the cache utilities are mutually exclusive.

Note: When running cache utilities, the message Could not create the Java
virtual machine is expected. Cache utilities do not create the virtual machine.
Some cache utilities can work with caches from previous Java versions or
caches that are created by JVMs with different bit-widths. These caches are
referred to as “incompatible” caches.

You can use the following suboptions with the -Xshareclasses option:

cacheDir=<directory>
Sets the directory in which cache data is read and written. By default,
<directory> is the user's C:\Documents and Settings\<username>\Local
Settings\Application Data\javasharedresources directory on Windows or
/tmp/javasharedresources on Linux, AIX®, z/OS®, and IBM i. You must
have sufficient permissions in <directory>. The JVM writes persistent cache
files directly into the directory specified. Persistent cache files can be safely
moved and deleted from the file system. Nonpersistent caches are stored in
shared memory and have control files that describe the location of the
memory. Control files are stored in a javasharedresources subdirectory of
the cacheDir specified. Do not move or delete control files in this directory.
The listAllCaches utility, the destroyAll utility, and the expire suboption
work only in the scope of a given cacheDir.

cacheRetransformed
Enables caching of classes that are transformed by using the JVMTI
RetransformClasses function. See JVMTI redefinition and retransformation
of classes for more information.

destroy (Utility option)
Destroys a cache that is specified by the name, cacheDir, and nonpersistent
suboptions. A cache can be destroyed only if all JVMs using it have shut
down and the user has sufficient permissions.

destroyAll (Utility option)
Tries to destroy all caches available using the specified cacheDir and
nonpersistent suboptions. A cache can be destroyed only if all JVMs using
it have shut down and the user has sufficient permissions.

expire=<time in minutes> (Utility option)
Destroys all caches that are unused for the time that is specified before
loading shared classes. This option is not a utility option because it does
not cause the JVM to exit. On NTFS file systems, the expire option is
accurate to the nearest hour.

groupAccess
Sets operating system permissions on a new cache to allow group access to
the cache. Group access can be set only when permitted by the operating
system umask setting. The default is user access only.

92 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

help
Lists all the command-line options.

listAllCaches (Utility option)
Lists all the compatible and incompatible caches that exist in the specified
cache directory. If you do not specify cacheDir, the default directory is
used. Summary information, such as Java version and current usage, is
displayed for each cache.

mprotect=[default | all | none]
Where:
v default: By default, the memory pages that contain the cache are always

protected, unless a specific page is being updated. This protection helps
prevent accidental or deliberate corruption to the cache. The cache
header is not protected by default because this protection has a
performance cost.

v all: This option ensures that all the cache pages are protected, including
the header.

v none: Specifying this option disables the page protection.

Note: Specifying all has a negative impact on performance. You should
specify all only for problem diagnosis and not for production.

modified=<modified context>
Used when a JVMTI agent is installed that might modify bytecode at run
time. If you do not specify this suboption and a bytecode modification
agent is installed, classes are safely shared with an extra performance cost.
The <modified context> is a descriptor chosen by the user; for example,
myModification1. This option partitions the cache, so that only JVMs using
context myModification1 can share the same classes. For instance, if you run
an application with a modification context and then run it again with a
different modification context, all classes are stored twice in the cache. See
Dealing with runtime bytecode modification for more information.

name=<name>
Connects to a cache of a given name, creating the cache if it does not exist.
This option is also used to indicate the cache that is to be modified by
cache utilities; for example, destroy. Use the listAllCaches utility to show
which named caches are currently available. If you do not specify a name,
the default name “sharedcc_%u” is used. "%u" in the cache name inserts
the current user name.

noaot
Disables caching and loading of AOT code. AOT code already in the
shared data cache can be loaded.

noBootclasspath
Disables the storage of classes loaded by the bootstrap class loader in the
shared classes cache. Often used with the SharedClassURLFilter API to
control exactly which classes are cached. See Using the SharedClassHelper
API for more information about shared class filtering.

none
Added to the end of a command line, disables class data sharing. This
suboption overrides class sharing arguments found earlier on the
command line.

nonfatal
Allows the JVM to start even if class data sharing fails. Normal behavior

Appendix. Appendixes 93

for the JVM is to refuse to start if class data sharing fails. If you select
nonfatal and the shared classes cache fails to initialize, the JVM attempts
to connect to the cache in read-only mode. If this attempt fails, the JVM
starts without class data sharing.

nonpersistent
Uses a nonpersistent cache. The cache is lost when the operating system
shuts down. Nonpersistent and persistent caches can have the same name.
You must always use the nonpersistent suboption when running utilities
such as destroy on a nonpersistent cache.

persistent (default for Windows and Linux platforms)
Uses a persistent cache. The cache is created on disk, which persists
beyond operating system restarts. Nonpersistent and persistent caches can
have the same name.

printAllStats (Utility option)
Displays detailed information about the contents of the cache that is
specified in the name=<name> suboption. If the name is not specified,
statistics are displayed about the default cache. Every class is listed in
chronological order with a reference to the location from which it was
loaded. See printAllStats utility for more information.

printStats (Utility option)
Displays summary information for the cache that is specified by the name,
cacheDir, and nonpersistent suboptions. The most useful information that
is displayed is how full the cache is and how many classes it contains.
Stale classes are classes that are updated on the file system and which the
cache has therefore marked as "stale". Stale classes are not purged from the
cache and can be reused. See printStats utility for more information.

readonly
Opens an existing cache with read-only permissions. The Java virtual
machine does not create a new cache with this suboption. Opening a cache
read-only prevents the VM from making any updates to the cache. If you
specify this suboption, the VM can connect to caches that were created by
other users or groups without requiring write access.

By default, this suboption is not specified.

reset
Causes a cache to be destroyed and then re-created when the JVM starts
up. This option can be added to the end of a command line as
-Xshareclasses:reset.

safemode
Forces the JVM to load all classes from disk and apply the modifications to
those classes (if applicable). For more information, see Using the safemode
option.

This suboption is deprecated in IBM SDK, Java Technology Edition,
Version 6.

silent
Disables all shared class messages, including error messages.
Unrecoverable error messages, which prevent the JVM from initializing, are
displayed.

verbose
Gives detailed output on the cache I/O activity, listing information about
classes that are stored and found. Each class loader is given a unique ID

94 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

(the bootstrap loader is always 0) and the output shows the class loader
hierarchy at work, where class loaders must ask their parents for a class
before they can load it themselves. It is typical to see many failed requests;
this behavior is expected for the class loader hierarchy. The standard
option -verbose:class also enables class sharing verbose output if class
sharing is enabled.

verboseAOT
Enables verbose output when compiled AOT code is being found or stored
in the cache. AOT code is generated heuristically. You might not see any
AOT code that is generated at all for a small application. You can disable
AOT caching using the noaot suboption. See the IBM JVM Messages Guide
for a list of the messages produced.

verboseHelper
Enables verbose output for the Java Helper API. This output shows you
how the Helper API is used by your class loader.

verboseIO
Gives detailed output on the cache I/O activity, listing information about
classes that are stored and found. Each class loader is given a unique ID
(the bootstrap loader is always 0) and the output shows the class loader
hierarchy at work, where class loaders must ask their parents for a class
before they can load it themselves. It is typical to see many failed requests;
this behavior is expected for the class loader hierarchy.

-Xsigcatch
Enables VM signal handling code.

-Xsigcatch
See also -Xnosigcatch. By default, signal handling is enabled.

-Xsigchain
Enables signal handler chaining.

-Xsigchain
See also -Xnosigchain. By default, signal handler chaining is enabled.

-Xss
Sets the maximum stack size for Java threads.

-Xss<size>
The default is 256 KB for 32-bit JVMs and 512 KB for 64-bit JVMs. The
maximum value varies according to platform and specific machine
configuration. If you exceed the maximum value, a java/lang/
OutOfMemoryError message is reported.

-Xssi
Sets the stack size increment for Java threads.

-Xssi<size>
When the stack for a Java thread becomes full it is increased in size by this
value until the maximum size (-Xss) is reached. The default is 16 KB.

-Xthr
-Xthr:<suboptions>

Appendix. Appendixes 95

-Xthr:minimizeUserCPU
Minimizes user-mode CPU usage in thread synchronization where
possible. The reduction in CPU usage might be a trade-off in exchange for
decreased performance.

-XtlhPrefetch (64-bit)
Speculatively prefetches bytes in the thread local heap (TLH) ahead of the current
allocation pointer during object allocation.

-XtlhPrefetch
This option helps reduce the performance cost of subsequent allocations.

-Xtrace
Trace options.

-Xtrace[:help] | [:<option>=<value>, ...]
See Controlling the trace for more information.

-Xtune:virtualized
Optimizes JVM function for virtualized environments, such as a cloud.

-Xtune:virtualized
Optimizes JVM function for virtualized environments, such as a cloud.

-Xverify
Use this option to enable or disable the verifier.

-Xverify[:<option>]
With no parameters, enables the verifier, which is the default. Therefore, if
used on its own with no parameters, for example, -Xverify, this option does
nothing. Optional parameters are as follows:
v all - enable maximum verification
v none - disable the verifier
v remote - enables strict class-loading checks on remotely loaded classes

The verifier is on by default and must be enabled for all production servers.
Running with the verifier off is not a supported configuration. If you
encounter problems and the verifier was turned off using -Xverify:none,
remove this option and try to reproduce the problem.

-Xzero
Enables reduction of the memory footprint of the Java runtime environment when
concurrently running multiple Java invocations.

-Xzero[:<option>]
-Xzero might not be appropriate for all types of applications because it
changes the implementation of java.util.ZipFile, which might cause extra
memory usage. -Xzero includes the optional parameters:
v j9zip - enables the j9zip sub option
v noj9zip - disables the j9zip sub option
v sharezip - enables the sharezip sub option
v nosharezip - disables the sharezip sub option
v none - disables all sub options
v describe - prints the sub options in effect

96 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

|
|

|
|

Because future versions might include more default options, -Xzero options are
used to specify the sub options that you want to disable. By default, -Xzero
enables j9zip and sharezip. A combination of j9zip and sharezip enables all
.jar files to have shared caches:
v j9zip - uses a new java.util.ZipFile implementation. This suboption is not

a requirement for sharezip; however, if j9zip is not enabled, only the
bootstrap .jar files have shared caches.

v sharezip - puts the j9zip cache into shared memory. The j9zip cache is a map
of zip entry names to file positions used to quickly find entries in the .zip
file. You must enable -Xshareclasses to avoid a warning message. When
using the sharezip suboption, note that this suboption allows every opened
.zip file and .jar file to store the j9zip cache in shared memory, so you might
fill the shared memory when opening multiple new .zip files and .jar files.
The affected API is java.util.zip.ZipFile (superclass of
java.util.jar.JarFile). The .zip and .jar files do not have to be on a class
path.

The system property com.ibm.zero.version is defined, and has a current value
of 2. Although -Xzero is accepted on all platforms, support for the sub options
varies by platform:
v -Xzero with all other sub options are available only on Windows x86-32 and

Linux x86-32 platforms.

.

JVM -XX command-line options
JVM command-line options that are specified with -XX are not recommended for
casual use.

These options are subject to change without notice.

-XXallowvmshutdown
This option is provided as a workaround for customer applications that cannot
shut down cleanly, as described in APAR IZ59734.

-XXallowvmshutdown:[false|true]
Customers who need this workaround should use -XXallowvmshutdown:false.
The default option is -XXallowvmshutdown:truefor Java 6 SR5 onwards.

-XX:codecachetotal
Use this option to set the maximum size limit for the JIT code cache.

-XX:codecachetotal=<size>
This option is an alias for the “-Xcodecachetotal” on page 99 option.

-XX:MaxDirectMemorySize
This option sets a limit on the amount of memory that can be reserved for all
Direct Byte Buffers.

-XX:MaxDirectMemorySize=<size>

Where <size> is the limit on memory that can be reserved for all Direct Byte
Buffers. If a value is set for this option, the sum of all Direct Byte Buffer sizes
cannot exceed the limit. After the limit is reached, a new Direct Byte Buffer can
be allocated only when enough old buffers are freed to provide enough space
to allocate the new buffer.

Appendix. Appendixes 97

By default, the JVM does not set a limit on how much memory is reserved for
Direct Byte Buffers. A soft limit of 64 MB is set, which the JVM automatically
expands in 32 MB chunks, as required.

-XX:-StackTraceInThrowable
This option removes stack traces from exceptions.

-XX:-StackTraceInThrowable
By default, stack traces are available in exceptions. Including a stack trace in
exceptions requires walking the stack and that can affect performance.
Removing stack traces from exceptions can improve performance but can also
make problems harder to debug.

When this option is enabled, Throwable.getStackTrace() returns an empty array
and the stack trace is displayed when an uncaught exception occurs.
Thread.getStackTrace() and Thread.getAllStackTraces() are not affected by this
option.

-XX:[+|-]UseCompressedOops (64-bit only)
This option enables or disables compressed references in 64-bit JVMs, and is
provided to help when porting applications from the Oracle JVM to the IBM JVM.
This option might not be supported in subsequent releases.

-XX:[+|-]UseCompressedOops

The -XX:+UseCompressedOops option enables compressed references in 64-bit
JVMs. The -XX:+UseCompressedOops option is similar to specifying
-Xcompressedrefs, which is detailed in the topic “JVM command-line options”
on page 83.

The -XX:-UseCompressedOops option prevents the use of compressed references
in 64-bit JVMs.

JIT and AOT command-line options
Use these JIT and AOT compiler command-line options to control code
compilation.

For options that take a <size> parameter, suffix the number with “k” or “K” to
indicate kilobytes, “m” or “M” to indicate megabytes, or “g” or “G” to indicate
gigabytes.

For more information about JIT and AOT, see JIT and AOT problem determination.

-Xaot
Use this option to control the behavior of the AOT compiler.

-Xaot[:<parameter>=<value>, ...]
With no parameters, enables the AOT compiler. The AOT compiler is enabled
by default but is not active unless shared classes are enabled. Using this option
on its own has no effect. The following parameters are useful:

count=<n>
Where <n> is the number of times a method is called before it is compiled
or loaded from an existing shared class cache. For example, setting count=0
forces the AOT compiler to compile everything on first execution.

exclude=={<method>}
Where <method> is the Java method you want to exclude when AOT code
is compiled or loaded from the shared classes cache. You can use this
option if the method causes the program to fail.

98 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

limitFile=(<filename>,<m>,<n>)
Compile or load only the methods listed on lines <m> to <n> in the
specified limit file. Methods not listed in the limit file and methods listed
on lines outside the range are not compiled or loaded.

loadExclude=<methods>
Do not load methods beginning with <methods>.

loadLimit=<methods>
Load methods beginning with <methods> only.

loadLimitFile=(<filename>,<m>,<n>)
Load only the methods listed on lines <m> to <n> in the specified limit
file. Methods not listed in the limit file and methods listed on lines outside
the range are not loaded.

verbose
Reports information about the AOT and JIT compiler configuration and
method compilation.

-Xcodecache
This option is used to tune performance.

-Xcodecache<size>
This option sets the size of each block of memory that is allocated to store the
native code of compiled Java methods. By default, this size is selected
internally according to the processor architecture and the capability of your
system. The maximum value a user can specify is 32 MB. If you set a value
larger than 32 MB, the JIT ignores the input and sets the value to 32 MB.

Note: The JIT compiler might allocate more than one code cache for an
application. Use the -Xcodecachetotal option to set the maximum amount of
memory that is used by all code caches.

-Xcodecachetotal
Use this option to set the maximum size limit for the JIT code cache.

-Xcodecachetotal<size>
See “JIT and AOT command-line options” on page 98 for more information
about the <size> parameter.

By default, the total size of the JIT code cache is determined by your operating
system, architecture, and the version of the IBM SDK that you are using.
Long-running, complex, server-type applications can fill the JIT code cache,
which can cause performance problems because not all of the important
methods can be JIT-compiled. Use the -Xcodecachetotal option to increase the
maximum code cache size beyond the default setting, to a setting that suits
your application.

The value that you specify is rounded up to a multiple of the code cache block
size, as specified by the “-Xcodecache” option. If you specify a value for the
-Xcodecachetotal optoin that is smaller than the default setting, that value is
ignored.

The maximum size limits, for both the JIT code and data caches, that are in use
by the JVM are shown in Javadump output. Look for lines that begin with
1STSEGLIMIT. Use this information together with verbose JIT tracing to
determine suitable values for this option on your system. For example
Javadump output, see Storage Management (MEMINFO).

Related reference:

Appendix. Appendixes 99

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

“-Xjit”
Use the JIT compiler command line option to produce verbose JIT trace output.
Related information:
Using Javadump

-Xint
This option makes the JVM use the Interpreter only, disabling the Just-In-Time (JIT)
and Ahead-Of-Time (AOT) compilers.

-Xint
By default, the JIT compiler is enabled. By default, the AOT compiler is
enabled, but is not used by the JVM unless shared classes are also enabled.

-Xjit
Use this option to control the behavior of the JIT compiler.

-Xjit[:<option>=<value>, ...]
The JIT compiler is enabled by default. Therefore, specifying -Xjit with no
options, has no effect. These options can be used to modify behavior:

count=<n>
Where <n> is the number of times a method is called before it is compiled.
For example, setting count=0 forces the JIT compiler to compile everything
on first execution.

exclude={<method>}
Excludes the specified method from compilation.

limitFile=(<filename>, <m>, <n>)
Compile only the methods that are listed on lines <m> to <n> in the
specified limit file. Methods that are not listed in the limit file and methods
that are listed on lines outside the range are not compiled.

optlevel=[noOpt | cold | warm | hot | veryHot | scorching]
Forces the JIT compiler to compile all methods at a specific optimization
level. Specifying optlevel might have an unexpected effect on
performance, including reduced overall performance.

verbose[={compileStart|compileEnd}]
Reports information about the JIT and AOT compiler configuration and
method compilation.

The ={compileStart|compileEnd} option reports when the JIT starts to
compile a method, and when it ends.

vlog=<filename>
Sends verbose output to a file. If you do not specify this parameter, the
output is sent to the standard error output stream (STDERR).

Related information:
Diagnosing a JIT or AOT problem

-Xnoaot
This option turns off the AOT compiler and disables the use of AOT-compiled
code.

-Xnoaot
By default, the AOT compiler is enabled but is active only when shared classes
are also enabled. Using this option does not affect the JIT compiler.

100 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

|
|

|

|

-Xnojit
This option turns off the JIT compiler.

-Xnojit
By default, the JIT compiler is enabled. This option does not affect the AOT
compiler.

-Xquickstart
This option causes the JIT compiler to run with a subset of optimizations.

-Xquickstart
The effect is faster compilation times that improve startup time, but longer
running applications might run slower. When the AOT compiler is active (both
shared classes and AOT compilation enabled), -Xquickstart causes all methods
to be AOT compiled. The AOT compilation improves the startup time of
subsequent runs, but might reduce performance for longer running
applications. -Xquickstart can degrade performance if it is used with
long-running applications that contain hot methods. The implementation of
-Xquickstart is subject to change in future releases. By default, -Xquickstart
is disabled..

-XsamplingExpirationTime
Use this option to disable JIT sampling after a specified amount of time.

-XsamplingExpirationTime<time>
Disables the JIT sampling thread after <time> seconds. When the JIT sampling
thread is disabled, no processor cycles are used by an idle JVM.

-Xscmaxaot
When you create a shared classes cache, you can use this option to apply a
maximum number of bytes in the class cache that can be used for AOT data.

-Xscmaxaot<size>
This option is useful if you want a certain amount of cache space guaranteed
for non-AOT data. If this option is not specified, by default the maximum limit
for AOT data is the amount of free space in the cache. The value of this option
must not be smaller than the value of -Xscminaot and must not be larger than
the value of -Xscmx.

-Xscminaot
When you create a shared classes cache, you can use this option to apply a
minimum number of bytes in the class cache to reserve for AOT data.

-Xscminaot<size>
If this option is not specified, no space is reserved for AOT data. However,
AOT data is still written to the cache until the cache is full or the -Xscmaxaot
limit is reached. The value of this option must not exceed the value of -Xscmx
or -Xscmaxaot. The value of -Xscminaot must always be considerably less than
the total cache size, because AOT data can be created only for cached classes. If
the value of -Xscminaot equals the value of -Xscmx, no class data or AOT data
can be stored.

Garbage Collector command-line options
Use these Garbage Collector command-line options to control garbage collection.

You might need to read Memory management to understand some of the
references that are given here.

Appendix. Appendixes 101

The -verbose:gc option detailed in Verbose garbage collection logging is the main
diagnostic aid that is available for runtime analysis of the Garbage Collector.
However, additional command-line options are available that affect the behavior of
the Garbage Collector and might aid diagnostic data collection.

For options that take a <size> parameter, suffix the number with "k" or "K" to
indicate kilobytes, "m" or "M" to indicate megabytes, or "g" or "G" to indicate
gigabytes.

For options that take a <percentage> parameter, use a number from 0 to 1, for
example, 50% is 0.5.

-Xalwaysclassgc
Always perform dynamic class unloading checks during global collection.

-Xalwaysclassgc
The default behavior is as defined by -Xclassgc.

-Xclassgc
Enables dynamic unloading of classes by the JVM. Garbage collection of class
objects occurs only on class loader changes.

-Xclassgc
Dynamic unloading is the default behavior. To disable dynamic class
unloading, use the -Xnoclassgc option.

-Xcompactexplicitgc
Enables full compaction each time System.gc() is called.

-Xcompactexplicitgc
Enables full compaction each time System.gc() is called.

-Xcompactgc
Compacts on all garbage collections (system and global).

-Xcompactgc
The default (no compaction option specified) makes the GC compact based on
a series of triggers that attempt to compact only when it is beneficial to the
future performance of the JVM.

-Xconcurrentbackground
Specifies the number of low-priority background threads attached to assist the
mutator threads in concurrent mark.

-Xconcurrentbackground<number>
The default is 0 for Linux on z Systems™ and 1 on all other platforms.

-Xconcurrentlevel
Specifies the allocation "tax" rate.

-Xconcurrentlevel<number>
This option indicates the ratio between the amount of heap allocated and the
amount of heap marked. The default is 8.

-Xconcurrentslack
Attempts to keep the specified amount of the heap space free in concurrent
collectors by starting the concurrent operations earlier.

-Xconcurrentslack<size>
Using this option can sometimes alleviate pause time problems in concurrent

102 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

collectors at the cost of longer concurrent cycles, affecting total throughput.
The default value is 0, which is optimal for most applications.

-Xconmeter
This option determines the usage of which area, LOA (Large Object Area) or SOA
(Small Object Area), is metered and hence which allocations are taxed during
concurrent mark.

-Xconmeter:<soa | loa | dynamic>
Using -Xconmeter:soa (the default) applies the allocation tax to allocations
from the small object area (SOA). Using -Xconmeter:loa applies the allocation
tax to allocations from the large object area (LOA). If -Xconmeter:dynamic is
specified, the collector dynamically determines which area to meter based on
which area is exhausted first, whether it is the SOA or the LOA.

-Xdisableexcessivegc
Disables the throwing of an OutOfMemory exception if excessive time is spent in
the GC.

-Xdisableexcessivegc
Disables the throwing of an OutOfMemory exception if excessive time is spent
in the GC.

-Xdisableexplicitgc
Disables System.gc() calls.

-Xdisableexplicitgc

Many applications still make an excessive number of explicit calls to
System.gc() to request garbage collection. In many cases, these calls degrade
performance through premature garbage collection and compactions. However,
you cannot always remove the calls from the application.

The -Xdisableexplicitgc parameter allows the JVM to ignore these garbage
collection suggestions. Typically, system administrators use this parameter in
applications that show some benefit from its use.

By default, calls to System.gc() trigger a garbage collection.

-Xdisablestringconstantgc
Prevents strings in the string intern table from being collected.

-Xdisablestringconstantgc
Prevents strings in the string intern table from being collected.

-Xenableexcessivegc
If excessive time is spent in the GC, the option returns null for an allocate request
and thus causes an OutOfMemory exception to be thrown.

-Xenableexcessivegc

The OutOfMemory exception is thrown only when the heap has been fully
expanded and the time spent is making up at least 95%. This behavior is the
default.

You can control the percentage that triggers an excessive GC event with the
-Xgc:excessiveGCratio option. For more information, see “-Xgc” on page 104.

-Xenablestringconstantgc
Enables strings from the string intern table to be collected.

Appendix. Appendixes 103

-Xenablestringconstantgc
This option is on by default.

-Xgc
Options that change the behavior of the Garbage Collector (GC). These options are
deprecated.

-Xgc:<excessiveGCratio | verbose | compact | nocompact |
scvNoAdaptiveTenure | scvTenureAge>

excessiveGCratio=value
Where value is a percentage. The default value is 95. This option can be
used only when -Xenableeexcessivegc is set. For more information,
see “-Xenableexcessivegc” on page 103.

scvNoAdaptiveTenure
This option turns off the adaptive tenure age in the generational
concurrent GC policy. The initial age that is set is maintained
throughout the run time of the Java virtual machine. See scvTenureAge.

scvTenureAge=<n>
This option sets the initial scavenger tenure age in the generational
concurrent GC policy. The range is 1 - 14 and the default value is 10.
For more information, see Tenure age.

Options verbose, compact, and nocompact are deprecated.

-Xgc:splitheap
Allocates the new and old areas of the generational Java heap in separate areas of
memory.

Using a split heap forces the Garbage Collector to use the gencon policy and
disables resizing of the new and old memory areas. See for more
information.See Split heap for more information. By default, the Java heap is
allocated in a single contiguous area of memory.

-Xgcpolicy
Controls the behavior of the Garbage Collector.

-Xgcpolicy:< gencon | optavgpause | optthruput | subpool (AIX, Linux and
IBM i on IBM POWER® architecture, Linux and z/OS on zSeries) >

gencon
The generational concurrent (gencon) policy uses a concurrent mark phase
combined with generational garbage collection to help minimize the time
that is spent in any garbage collection pause. This policy is particularly
useful for applications with many short-lived objects, such as transactional
applications. Pause times can be significantly shorter than with the
optthruput policy, while still producing good throughput. Heap
fragmentation is also reduced.

optavgpause
The "optimize for pause time" (optavgpause) policy uses concurrent mark
and concurrent sweep phases. Pause times are shorter than with
optthruput, but application throughput is reduced because some garbage
collection work is taking place while the application is running. Consider
using this policy if you have a large heap size (available on 64-bit
platforms), because this policy limits the effect of increasing heap size on
the length of the garbage collection pause. However, if your application
uses many short-lived objects, the gencon policy might produce better
performance.

104 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

optthruput
The "optimize for throughput" (optthruput) policy (default) disables the
concurrent mark phase. The application stops during global garbage
collection, so long pauses can occur. This configuration is typically used for
large-heap applications when high application throughput, rather than
short garbage collection pauses, is the main performance goal. If your
application cannot tolerate long garbage collection pauses, consider using
another policy, such as gencon.

-Xgcthreads
Sets the number of threads that the Garbage Collector uses for parallel operations.

-Xgcthreads<number>
The total number of GC threads is composed of one application thread with
the remainder being dedicated GC threads. By default, the number is set to
n-1, where n is the number of reported CPUs. Where SMT or hyperthreading is
in place, the number of reported CPUs is larger than the number of physical
CPUs. Likewise, where virtualization is in place, the number of reported CPUs
is the number of virtual CPUs assigned to the operating system. To set it to a
different number, for example 4, use -Xgcthreads4. The minimum valid value
is 1, which disables parallel operations, at the cost of performance. No
advantage is gained if you increase the number of threads to more than the
default setting.

On systems running multiple JVMs or in LPAR environments where multiple
JVMs can share the same physical CPUs, you might want to restrict the
number of GC threads used by each JVM. The restriction helps prevent the
total number of parallel operation GC threads for all JVMs exceeding the
number of physical CPUs present, when multiple JVMs perform garbage
collection at the same time.

-Xgcworkpackets
Specifies the total number of work packets available in the global collector.

-Xgcworkpackets<number>
If you do not specify a value, the collector allocates a number of packets based
on the maximum heap size.

-Xloa
This option enables the large object area (LOA).

-Xloa
By default, allocations are made in the small object area (SOA). If there is no
room in the SOA, and an object is larger than 64KB, the object is allocated in
the LOA.

By default, the LOA is enabled for all GC policies except for subpool, where
the LOA is not available.

-Xloainitial
Specifies the initial percentage (between 0 and 0.95) of the current tenure space
allocated to the large object area (LOA).

-Xloainitial<percentage>
The default value is 0.05, which is 5%.

-Xloamaximum
Specifies the maximum percentage (between 0 and 0.95) of the current tenure space
allocated to the large object area (LOA).

Appendix. Appendixes 105

-Xloamaximum<percentage>
The default value is 0.5, which is 50%.

-Xloaminimum
Specifies the minimum percentage (between 0 and 0.95) of the current tenure space
allocated to the large object area (LOA).

-Xloaminimum<percentage>
The LOA does not shrink to less than this value. The default value is 0, which
is 0%.

-Xmaxe
Sets the maximum amount by which the garbage collector expands the heap.

-Xmaxe<size>
Typically, the garbage collector expands the heap when the amount of free
space falls to less than 30% (or by the amount specified using -Xminf), by the
amount required to restore the free space to 30%. The -Xmaxe option limits the
expansion to the specified value; for example -Xmaxe10M limits the expansion to
10 MB. By default, there is no maximum expansion size.

-Xmaxf
Specifies the maximum percentage of heap that must be free after a garbage
collection.

-Xmaxf<percentage>
If the free space exceeds this amount, the JVM tries to shrink the heap. The
default value is 0.6 (60%).

-Xmaxt
Specifies the maximum percentage of time to be spent in Garbage Collection.

-Xmaxt<percentage>
If the percentage of time exceeds this value, the JVM tries to expand the heap.
The default value is 13%.

-Xmca
Sets the expansion step for the memory allocated to store the RAM portion of
loaded classes.

-Xmca<size>
Each time more memory is required to store classes in RAM, the allocated
memory is increased by this amount. By default, the expansion step is 32 KB.
Use the -verbose:sizes option to determine the value that the VM is using. If
the expansion step size you choose is too large, OutOfMemoryError is reported.
The exact value of a “too large” expansion step size varies according to the
platform and the specific machine configuration.

-Xmcrs
Sets an initial size for an area in memory that is reserved for compressed
references within the lowest 4 GB memory area.

Native memory OutOfMemoryError exceptions might occur when using
compressed references if the lowest 4 GB of address space becomes full,
particularly when loading classes, starting threads, or using monitors. This option
secures space for any native classes, monitors, and threads that are used by
compressed references.

106 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

|
|
|

|
|
|
|
|

-Xmcrs<mem_size>
Where <mem_size> is the initial size. You can use the -verbose:sizes option to
find out the value that is being used by the VM. If you are not using
compressed references and this option is set, the option is ignored and the
output of -verbose:sizes shows -Xmcrs0.

The following option sets an initial size of 200 MB for the memory area:
-Xmcrs200M

-Xmco
Sets the expansion step for the memory allocated to store the ROM portion of
loaded classes.

-Xmco<size>
Each time more memory is required to store classes in ROM, the allocated
memory is increased by this amount. By default, the expansion step is 128 KB.
Use the -verbose:sizes option to determine the value that the VM is using. If
the expansion step size you choose is too large, OutOfMemoryError is reported.
The exact value of a “too large” expansion step size varies according to the
platform and the specific machine configuration.

-Xmine
Sets the minimum amount by which the Garbage Collector expands the heap.

-Xmine<size>
Typically, the garbage collector expands the heap by the amount required to
restore the free space to 30% (or the amount specified using -Xminf). The
-Xmine option sets the expansion to be at least the specified value; for example,
-Xmine50M sets the expansion size to a minimum of 50 MB. By default, the
minimum expansion size is 1 MB.

-Xminf
Specifies the minimum percentage of heap to remain free after a garbage collection.

-Xminf<percentage>
If the free space falls to less than this amount, the JVM attempts to expand the
heap. The default value is 30%.

-Xmint
Specifies the minimum percentage of time to spend in Garbage Collection.

-Xmint<percentage>
If the percentage of time drops to less than this value, the JVM tries to shrink
the heap. The default value is 5%.

-Xmn
Sets the initial and maximum size of the new area to the specified value when
using -Xgcpolicy:gencon.

-Xmn<size>
Equivalent to setting both -Xmns and -Xmnx. If you set either -Xmns or -Xmnx,
you cannot set -Xmn. If you try to set -Xmn with either -Xmns or -Xmnx, the VM
does not start, returning an error. By default, -Xmn is not set. If the scavenger is
disabled, this option is ignored.

-Xmns
Sets the initial size of the new area to the specified value when using
-Xgcpolicy:gencon.

Appendix. Appendixes 107

|
|
|
|
|

|

|

|

-Xmns<size>
By default, this option is set to 25% of the value of the -Xms option. This option
returns an error if you try to use it with -Xmn. You can use the -verbose:sizes
option to find out the values that the VM is currently using. If the scavenger is
disabled, this option is ignored.

-Xmnx
Sets the maximum size of the new area to the specified value when using
-Xgcpolicy:gencon.

-Xmnx<size>
By default, this option is set to 25% of the value of the -Xmx option. This option
returns an error if you try to use it with -Xmn. You can use the -verbose:sizes
option to find out the values that the VM is currently using. If the scavenger is
disabled, this option is ignored.

-Xmo
Sets the initial and maximum size of the old (tenured) heap to the specified value
when using -Xgcpolicy:gencon.

-Xmo<size>
Equivalent to setting both -Xmos and -Xmox. If you set either -Xmos or -Xmox,
you cannot set -Xmo. If you try to set -Xmo with either -Xmos or -Xmox, the VM
does not start, returning an error. By default, -Xmo is not set.

-Xmoi
Sets the amount the Java heap is incremented when using -Xgcpolicy:gencon.

-Xmoi<size>
If set to zero, no expansion is allowed. By default, the increment size is
calculated on the expansion size, set by -Xmine and -Xminf.

-Xmos
Sets the initial size of the old (tenure) heap to the specified value when using
-Xgcpolicy:gencon.

-Xmos<size>
By default, this option is set to 75% of the value of the -Xms option. This option
returns an error if you try to use it with -Xmo. You can use the -verbose:sizes
option to find out the values that the VM is currently using.

-Xmox
Sets the maximum size of the old (tenure) heap to the specified value when using
-Xgcpolicy:gencon.

-Xmox<size>
By default, this option is set to the same value as the -Xmx option. This option
returns an error if you try to use it with -Xmo. You can use the -verbose:sizes
option to find out the values that the VM is currently using.

-Xmr
Sets the size of the Garbage Collection "remembered set".

-Xmr<size>
The Garbage Collection "remembered set" is a list of objects in the old
(tenured) heap that have references to objects in the new area. By default, this
option is set to 16 K.

-Xmrx
Sets the remembered maximum size setting.

108 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

-Xmrx<size>
Sets the remembered maximum size setting.

-Xms
Sets the initial Java heap size.

-Xmssize
size can be specified in megabytes (m) or gigabytes (g). For example: -Xms2g
sets an initial Java heap size of 2GB. The minimum size is 1 MB.

You can also use the -Xmo option.

If the scavenger is enabled, -Xms >= -Xmn + -Xmo.

If the scavenger is disabled, -Xms >= -Xmo.

Note: The -Xmo option is not supported by the balanced garbage collection policy.

-Xmx
Sets the maximum memory size for the application (-Xmx >= -Xms).

-Xmxsize
size can be specified in megabytes (m) or gigabytes (g). For example: -Xmx2g
sets a maximum heap size of 2GB.

For information about default values, see “Default settings for the JVM” on
page 112.

If you are allocating the Java heap with large pages, read the information provided
for the “-Xlp” on page 88 option.

Examples of the use of -Xms and -Xmx:

-Xms2m -Xmx64m
Heap starts at 2 MB and grows to a maximum of 64 MB.

-Xms100m -Xmx100m
Heap starts at 100 MB and never grows.

-Xms20m -Xmx1024m
Heap starts at 20 MB and grows to a maximum of 1 GB.

-Xms50m
Heap starts at 50 MB and grows to the default maximum.

-Xmx256m
Heap starts at default initial value and grows to a maximum of 256 MB.

If you exceed the limit set by the -Xmx option, the JVM generates an
OutofMemoryError.

-Xnoclassgc
Disables class garbage collection.

-Xnoclassgc
This option switches off garbage collection of storage associated with Java
technology classes that are no longer being used by the JVM. The default
behavior is as defined by -Xclassgc. Enabling this option is not recommended
except under the direction of the IBM support team. The reason is the option
can cause unlimited native memory growth, leading to out-of-memory errors.

Appendix. Appendixes 109

-Xnocompactexplicitgc
Disables compaction on System.gc() calls.

-Xnocompactexplicitgc
Compaction takes place on global garbage collections if you specify
-Xcompactgc or if compaction triggers are met. By default, compaction is
enabled on calls to System.gc().

-Xnocompactgc
Disables compaction on all garbage collections (system or global).

-Xnocompactgc
By default, compaction is enabled.

-Xnoloa
Prevents allocation of a large object area; all objects are allocated in the SOA.

-Xnoloa
See also -Xloa.

-Xnopartialcompactgc
Disables incremental compaction.

-Xnopartialcompactgc
See also -Xpartialcompactgc.

-Xpartialcompactgc
Enables incremental compaction.

-Xpartialcompactgc
See also -Xnopartialcompactgc. By default, this option is not set, so all
compactions are full.

-Xsoftmx
This option sets a "soft" maximum limit for the initial size of the Java heap.

-Xsoftmx<size>(AIX only)
Use the -Xmx option to set a "hard" limit for the maximum size of the heap. By
default, -Xsoftmx is set to the same value as -Xmx. The value of -Xms must be
less than, or equal to, the value of -Xsoftmx. See the introduction to this topic
for more information about specifying <size> parameters.

You can set this option on the command line, then modify it at run time by
using the MemoryMXBean.setMaxHeapSize() method in the
com.ibm.lang.management API. By using this API, Java applications can
dynamically monitor and adjust the heap size as required. This function can be
useful in virtualized or cloud environments, for example, where the available
memory might change dynamically to meet business needs. When you use the
API, you must specify the value in bytes, such as 2147483648 instead of 2g.

For example, you might set the initial heap size to 1 GB and the maximum
heap size to 8 GB. You might set a smaller value, such as 2 GB, for -Xsoftmx,
to limit the heap size that is used initially:
–Xms1g –Xsoftmx2g –Xmx8g

You can then use the com.ibm.lang.management API from within a Java
application to increase the -Xsoftmx value during run time, as load increases.
This change allows the application to use more memory than you specified
initially.

110 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

-Xsoftrefthreshold
Sets the value used by the garbage collector to determine the number of garbage
collections after which a soft reference is cleared if its referent has not been
marked.

-Xsoftrefthreshold<number>
The default is 32, meaning that the soft reference is cleared after 32 *
(percentage of free heap space) garbage collection cycles where its referent was
not marked. For example, if -Xsoftrefthreshold is set to 32, and the heap is
50% free, soft references are cleared after 16 garbage collection cycles.

-Xtgc
Provides garbage collection tracing options.

-Xtgc:<arguments>
<arguments> is a comma-separated list containing one or more of the following
arguments:

backtrace
Before a garbage collection, a single line is printed containing the name of
the master thread for garbage collection, as well as the value of the
osThread slot in the J9VMThread structure.

compaction
Prints extra information showing the relative time spent by threads in the
“move” and “fixup” phases of compaction

concurrent
Prints extra information showing the activity of the concurrent mark
background thread

dump
Prints a line of output for every free chunk of memory in the system,
including "dark matter" (free chunks that are not on the free list for some
reason, typically because they are too small). Each line contains the base
address and the size in bytes of the chunk. If the chunk is followed in the
heap by an object, the size and class name of the object is also printed.
This argument has a similar effect to the terse argument.

freeList
Before a garbage collection, prints information about the free list and
allocation statistics since the last garbage collection. Prints the number of
items on the free list, including "deferred" entries (with the scavenger, the
unused space is a deferred free list entry). For TLH and non-TLH
allocations, prints the total number of allocations, the average allocation
size, and the total number of bytes discarded during allocation. For
non-TLH allocations, also included is the average number of entries that
were searched before a sufficiently large entry was found.

parallel
Produces statistics on the activity of the parallel threads during the mark
and sweep phases of a global garbage collection.

references
Prints extra information every time that a reference object is enqueued for
finalization, showing the reference type, reference address, and referent
address.

scavenger
Prints extra information after each scavenger collection. A histogram is
produced showing the number of instances of each class, and their relative

Appendix. Appendixes 111

ages, present in the survivor space. The information is obtained by
performing a linear walk-through of the space.

terse
Dumps the contents of the entire heap before and after a garbage
collection. For each object or free chunk in the heap, a line of trace output
is produced. Each line contains the base address, "a" if it is an allocated
object, and "f" if it is a free chunk, the size of the chunk in bytes, and, if it
is an object, its class name.

-Xverbosegclog
Causes -verbose:gc output to be written to a specified file.

-Xverbosegclog[:<file>[,<X>,<Y>]]
If the file cannot be found, -verbose:gc tries to create the file, and then
continues as normal if it is successful. If it cannot create the file (for example, if
an invalid filename is passed into the command), it redirects the output to
stderr.

If you specify <X> and <Y> the -verbose:gc output is redirected to X files,
each containing Y GC cycles.

The dump agent tokens can be used in the filename. See Dump agent tokens
for more information. If you do not specify <file>, verbosegc.%Y%m%d.%H%M%S.
%pid.txt is used.

By default, no verbose GC logging occurs.

Default settings for the JVM
This appendix shows the default settings that the JVM uses. These settings affect
how the JVM operates if you do not apply any changes to its environment. The
tables show the JVM operation and the default setting.

These tables are a quick reference to the state of the JVM when it is first installed.
The last column shows how the default setting can be changed:

c The setting is controlled by a command-line parameter only.

e The setting is controlled by an environment variable only.

ec The setting is controlled by a command-line parameter or an environment
variable. The command-line parameter always takes precedence.

JVM setting Default Setting
affected by

Javadump Enabled ec

Heapdump Disabled ec

System dump Enabled ec

Snap traces Enabled ec

Verbose output Disabled c

Boot classpath search Disabled c

JNI checks Disabled c

Remote debugging Disabled c

Strict conformance checks Disabled c

Quickstart Disabled c

112 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

JVM setting Default Setting
affected by

Remote debug info server Disabled c

Reduced signaling Disabled c

Signal handler chaining Enabled c

Classpath Not set ec

Class data sharing Disabled c

Accessibility support Enabled e

JIT compiler Enabled ec

AOT compiler (AOT is not used by the JVM unless
shared classes are also enabled)

Enabled c

JIT debug options Disabled c

Java2D max size of fonts with algorithmic bold 14 point e

Java2D use rendered bitmaps in scalable fonts Enabled e

Java2D freetype font rasterizing Enabled e

Java2D use AWT fonts Disabled e

JVM setting AIX IBM i Linux Windows z/OS Setting
affected

by

Default locale None None None N/A None e

Time to wait before starting
plug-in

N/A N/A Zero N/A N/A e

Temporary directory /tmp /tmp /tmp c:\temp /tmp e

Plug-in redirection None None None N/A None e

IM switching Disabled Disabled Disabled N/A Disabled e

IM modifiers Disabled Disabled Disabled N/A Disabled e

Thread model N/A N/A N/A N/A Native e

Initial stack size for Java Threads
32-bit. Use: -Xiss<size>

2 KB 2 KB 2 KB 2 KB 2 KB c

Maximum stack size for Java
Threads 32-bit. Use: -Xss<size>

256 KB 256 KB 256 KB 256 KB 256 KB c

Stack size for OS Threads 32-bit.
Use -Xmso<size>

256 KB 256 KB 256 KB 32 KB 256 KB c

Initial stack size for Java Threads
64-bit. Use: -Xiss<size>

2 KB N/A 2 KB 2 KB 2 KB c

Maximum stack size for Java
Threads 64-bit. Use: -Xss<size>

512 KB N/A 512 KB 512 KB 512 KB c

Stack size for OS Threads 64-bit.
Use -Xmso<size>

256 KB N/A 256 KB 256 KB 256 KB c

Initial heap size. Use -Xms<size> 4 MB 4 MB 4 MB 4 MB 4 MB c

Appendix. Appendixes 113

JVM setting AIX IBM i Linux Windows z/OS Setting
affected

by

Maximum Java heap size. Use
-Xmx<size>

Half the
available
memory
with a
minimum
of 16 MB
and a
maximum
of 512 MB

2 GB Half the available
memory with a
minimum of 16
MB and a
maximum of 512
MB

Half the
real
memory
with a
minimum
of 16 MB
and a
maximum
of 2 GB

Half the
available
memory
with a
minimum
of 16 MB
and a
maximum
of 512 MB

c

“Available memory” is defined as being the smallest of two values:
v The real or “physical” memory.
v The RLIMIT_AS value.

Known issues and limitations
Known issues or limitations that you might encounter in specific system
environments, or configurations.

Font problems in supported locales

The release supports the following locales:
v Bengali (bn_IN)
v Malayalam (ml_IN)
v Oriya (or_IN)

However the fonts from these locales might not work on AWT components.

Use of sockets with IPv6

The release supports IPv6. However, because the current IPv6 support in Windows
is not dual-stack, the release emulates dual-stack behavior on an IPv6 enabled
system. Your Java technology application might use up to twice as many sockets
because of the nature of the emulation. To disable this emulation, disable IPv6
support in the release by setting the system property java.net.preferIPv4Stack to
true.

JConsole monitoring tool Local tab

In the IBM JConsole tool, the Local tab, which allows you to connect to other
Virtual Machines on the same system, is not available. Also, the corresponding
command line pid option is not supported. Instead, use the Remote tab in
JConsole to connect to the Virtual Machine that you want to monitor. Alternatively,
use the connection command-line option, specifying a host of localhost and a
port number. When you start the application that you want to monitor, set these
command-line options:

-Dcom.sun.management.jmxremote.port=<value>
Specifies the port the management agent listens on.

-Dcom.sun.management.jmxremote.authenticate=false
Disables authentication unless you have created a user name file.

114 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

-Dcom.sun.management.jmxremote.ssl=false
Disables SSL encryption.

Incorrect stack traces when loading new classes after an
Exception is caught

If new classes are loaded after an Exception has been caught, the stack trace
contained in the Exception might become incorrect. The stack trace becomes
incorrect if classes in the stack trace are unloaded, and new classes are loaded into
their memory segments.

Web Start and Java technology 1.3 applications

The release version of Web Start does not support launching Java technology 1.3
applications.

Input Method Editor (IME)

When working with an Input Method Editor (IME), complete the character
composition and select the candidate before using the workspace for any other
operation.

When a user types text in an AWT TextArea while using an Input Method Editor
(IME), and then resizes the application window before committing the text, the text
is committed automatically.

Slow DSA key pair generation

Creating DSA key pairs of unusual lengths can take a significant amount of time
on slow machines. Do not interpret the delay as a stop or endless loop, because the
process finishes if sufficient time is allowed. The DSA key generation algorithm has
been optimized to generate standard key lengths (for instance, 512, 1024) more
quickly than others.

Personal firewalls

Personal firewalls can cause problems for the Windows NIO code, causing
particular operations to fail. For example, the method call Selector.open() can throw
a “java.io.IOException: Unable to establish loopback connection” with a cause of
“java.net.ConnectException: Connection refused: connect”. The exception is caused
by the operating system connecting on a port that is being blocked by the firewall.
The JVM tries the connect operation again, asking the operating system to select a
different port number. If it still cannot connect after several attempts, a
ConnectException is thrown.

If you see this exception, you can set the system property java.nio.debug=pipe to
see which port numbers are being blocked.

File handle exhaustion

On Windows 2000 and XP, the default value of the number of files that you can
have simultaneously opened is too low and causes problems to applications that
are I/O intensive. To fix this limitation, edit the file <windows>\system32\CONFIG.NT
and set the following values:
files=200
buffers=60

Appendix. Appendixes 115

where <windows> is the directory where Windows is installed.

DirectDraw and mouse pointer problems

On Windows 2000, with a 32-bit color depth, the DirectDraw mechanism of the
JVM does not repaint the region under the mouse pointer. The effect is that gray or
black squares are displayed on menus after the mouse has been there. The
workaround is either to switch off direct draw (-Dsun.java2d.noddraw), or to
change your screen color resolution to some other value, such as 256 color.

NIO connection problems

The NIO SocketChannel finishConnect() method can return true (the channel is
connected) or false (the connection process is not yet complete), or can throw an
exception. On Windows 2000, when using non-blocking connections, false might
be returned even after a previous select() call has implied that a channel is ready
for processing.

The methods setReadOnly() and setWritable(false) do not work
on Windows directories

From Version 6 Service Refresh 10, if you use these methods on a directory on the
Windows operating system, they return the value false.

Note: In the same situation in earlier releases, these methods set the DOS
read-only attribute to prevent the directory from being deleted. However, this
behaviour does not make the directory read-only, therefore the only changes in
behavior are that the methods now return the value false, and the read-only
attribute is not set.

Stack range of the main thread

You cannot alter the stack range of the main thread (also known as the primordial
thread) at run time. The main thread has a fixed size of 256 KB, determined as the
optimum value for performance reasons. You can use the -Xss option to modify
the stack range only on threads other than the main one. Do not use the main
thread for heavily recursive calculations because the main thread is more prone to
stack overflow than other threads.

DBCS characters

If you are typing DBCS characters in a JTextArea, JTextField, or JFileChooser,
switching from some Chinese IMEs (in particular, Chinese Internal Code and
Zhengma) to Intelligent ABC IME might cause a core dump to be produced.

Czech language installation

For Czech users, note that the language selection panel of the installation program
offers one translated entry in an installation that is otherwise not translated. This
limitation is caused by the installation program. The string is picked up from the
operating system based on the code page. Because Polish (for which the
installation is translated) and Czech both have code page 1250, the installation
program attempts to retrieve a language list from the system for both languages,
resulting in this string in the language list.

116 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

Traditional Chinese and the more command

If you use Traditional Chinese, do not pipe the output from your application
directly into the more command. Instead, direct the output to a temporary file and
view the file separately.

Accent corruption for Catalan users

For Catalan users of Windows 2000, use the Lucida Console font to avoid
corruption of accented capital letters.

NullPointerException with the GTK Look and Feel

DBCS environments only:

If your application fails with a NullPointerException using the GTK Look and Feel,
unset the GNOME_DESKTOP_SESSION_ID environment variable.

Unicode Shift_JIS code page alias

Japanese users only:

The Unicode code page alias “\u30b7\u30d5\u30c8\u7b26\u53f7\u5316\u8868\
u73fe” for Shift_JIS has been removed. If you use this code page in your
applications, replace it with Shift_JIS.

-Xshareclasses:<options>

Shared classes cache and control files are not compatible between Version 6 SR 4
and previous releases.

Java Kernel installation

The kernel aims to reduce the startup time imposed by an application when it
finds that the installed release needs an update. When this situation occurs, the
kernel automatically downloads only the components that are needed directly from
the Oracle Web site. Automated download is currently not possible with the IBM
implementation of the Oracle update.

Java Deployment Toolkit

The toolkit implements the JavaScript DeployJava.js, which can be used to
automatically generate any HTML needed to deploy applets and Java Web Start
applications. However, the automatic generation is not possible with this release,
because the process involves downloading and running the specific release from a
public site, using public functions.

Next-Generation Java Plug-In Technology

There are some known limitations relating to Next-Generation Java Plug-In
Technology:
1. When using the Next-Generation Plug-In, the Console option previously

available in the Microsoft Internet Explorer tools menu is not available.
2. “Secure Static Versioning (SSV) support” on page 48 is not provided for

Next-Generation plug-ins.

Appendix. Appendixes 117

Expired GTE Cybertrust Certificate

The release contains an expired GTE CyberTrust Certificate in the CACERTS file for
compatibility reasons. The CACERTS file is provided as a default truststore. Some
common public certificates are provided as a convenience.

If no applications require the certificate, you can leave it in the CACERTS file.
Alternatively, the certificate can be deleted. If applications do require the certificate,
modify them to use the newer GTE CyberTrust Global root certificate that expires
in 2018.

This certificate might be removed for later versions of the release.

Java Communications API (JavaComm) parallel port detection

The JavaComm API gives applications a platform-independent way of performing
serial and parallel port communications for technologies such as voice mail, fax,
and smart cards. On Microsoft Windows 7 and Microsoft Windows Server 2008 R2,
the parallel port is not detected by the operating system. This means that the
JavaComm API for parallel ports cannot be used on these operating systems.
However, the serial port can be used for communication.

Release installation on Windows 7 on Intel 32-bit architecture

This limitation applies only to Version 6 SR6.

The first installation and uninstallation of the release is successful. However, repeat
installation and uninstallation cycles might generate one or more of the following
error messages during installation or uninstallation:
"Error 1316. A network error

occurred while reading the file. F:\Users\ADMINI~1
\AppData\Local\Temp\
{DEF2FE6F-D233-45AD-94F4-3D050F1685D3}\IBM 32-bit SDK for
Java v6 .msi"

msci missing

msi file missing

This problem applies to the Development Kit only.

Using Web Start to launch a JNLP application

When using Web Start to launch a Java Network Launching Protocol (JNLP)
application that requires an older version of Java technology, you might see an
error containing the following message:
java.lang.NoClassDefFoundError: com/sun/deploy/util/BlackList

This results from a check controlled by the deployment configuration property
deployment.security.blacklist.check The property is enabled using the Enable
blacklist revocation check option in the Java Control Panel.

To work around the problem:
1. Launch the Java Control Panel.
2. Select Advanced tab > Security.
3. Clear the Enable blacklist revocation check option.

118 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

Using -Xshareclasses:destroy during JVM startup

When running the command java -Xshareclasses:destroy on a shared cache that
is being used by a second JVM during startup, you might have the following
issues:
v The second JVM fails.
v The shared cache is deleted.

Windows 7 requires approval to run ssvagent.exe when
Next-Generation Java Plug-In is disabled

If Next-Generation Java Plug-in is disabled on Windows 7, Windows Vista or
Windows Server 2008, a UAC (User Account Control) dialog requesting user
consent to run ssvagent.exe might be seen when Internet Explorer is launched.
This behavior is enforced by the operating system when the user is not logged on
as Administrator, or does not run Internet Explorer with Administrator privileges.
You can give consent to run this executable file.

Problems accessing archive files created using java.util.Zip*

The java.util.Zip* files can create archive files that are larger than 4 GB.
However, some third-party compression tools have file size limitations, and cannot
access files larger than 4 GB.

Chinese characters stored as ? in an Oracle database

When you configure an Oracle database to use the ZHS16GBK character set, some
Chinese characters or symbols that are encoded with the GBK character set are
incorrectly stored as a question mark (?). This problem is caused by an
incompatibility of the GBK undefined code range Unicode mapping between the
Oracle ZHS16GBK character set and the IBM GBK converter. To fix this problem,
use a new code page, MS936A, by including the following system property when
you start the JVM:
-Dfile.encoding=MS936A

For IBM WebSphere Application Server users, this problem might occur when web
applications that use JDBC configure Oracle as the WebSphere Application Server
data source. To fix this problem, use a new code page, MS936A, as follows:
1. Use the following system property when you start the JVM:

-Dfile.encoding=MS936A

2. Add the following lines to the WAS_HOME/properties/converter.properties file,
where WAS_HOME is your WebSphere Application Server installation directory.
GBK=MS936A
GB2312=MS936A

Issues with the XL TXE-J XSLT compiler

A low split limit might cause compilation errors.

Avoid calling Java technology extension functions that have side effects because
the order of execution is not guaranteed.

Versions of Ant before 1.7.0 do not work with the XL TXE-J compiler. Instead, use
the XSLT4J interpreter by running the release with the following system property:

Appendix. Appendixes 119

v -Djavax.xml.transform.TransformerFactory=
org.apache.xalan.processor.TransformerFactoryImpl.

Large page request fails

There is no error message issued when the JVM is unable to honor the -Xlp
request.

There are a number of reasons why the JVM cannot honor a large page request.
For example, there might be insufficient large pages available on the system at the
time of the request. To check whether the -Xlp request was honored, you can
review the output from -verbose:gc. Look for the attributes requestedPageSize
and pageSize in the -verbose:gc log file. The attribute requestedPageSize contains
the value specified by -Xlp. The attribute pageSize is the actual page size used by
the JVM.

Unexpected CertificateException

Version 6 Service Refresh 13 fix pack 1 and later releases contain a security
enhancement to correctly validate certificates on jar files of applications. After
upgrading, a CertificateException occurs for any applications in one of the
following scenarios:
v The application jar is not properly signed.
v The application jar has incorrect certificates.
v A certificate in the certificate chain is revoked.

To avoid these exceptions, make sure that your application jars are signed with
valid certificates before you upgrade from an earlier release. This issue relates to
APAR IV38456.

Unexpected application errors with RMI

If your application uses RMI and you experience unexpected errors after updating
to Version 6 Service Refresh 13 fix pack 2, or later releases, the problem might be
associated with a change to the default value of the RMI property
java.rmi.server.useCodebaseOnly. For more information, see http://
docs.oracle.com/javase/7/docs/technotes/guides/rmi/enhancements-7.html.

Startup issues on applications that contain spaces in the
program name

After installing Version 6 Service Refresh 13 fix pack 2 or later releases,
applications that contain spaces in the program name, or that use quotation marks
incorrectly, might fail to start. This issue might be caused by improvements to the
way Runtime.exec decodes command strings. For more information, including
guidance on resolving problems, see http://www.oracle.com/technetwork/java/
javase/7u21-relnotes-1932873.html#jaruntime.

Unexpected XSLT error on extension elements or extension
functions when security is enabled

From Version 6 Service Refresh 14, any attempt to use extension elements or
extension functions when security is enabled, results in a
javax.xml.transform.TransformerException error during XSLT processing. This
change in behavior is introduced to enhance security.

120 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

|

|
|

|
|
|
|
|
|
|

|

|
|
|
|

|

|

|

|
|
|

|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|
|

http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/enhancements-7.html
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/enhancements-7.html
http://www.oracle.com/technetwork/java/javase/7u21-relnotes-1932873.html#jaruntime
http://www.oracle.com/technetwork/java/javase/7u21-relnotes-1932873.html#jaruntime

The following XSLT message is generated when extension functions are used: Use
of the extension function '<method name>' is not allowed when security is
enabled. To override this, set the
com.ibm.xtq.processor.overrideSecureProcessing property to true. This
override only affects XSLT processing.

The following XSLT message is generated when extension elements are used: Use
of the extension element '<element name>' is not allowed when security is
enabled. To override this, set the
com.ibm.xtq.processor.overrideSecureProcessing property to true. This
override only affects XSLT processing.

To allow extensions when security is enabled, set the
com.ibm.xtq.processor.overrideSecureProcessing system property to true. For
more information about this system property, see
“-Dcom.ibm.xtq.processor.overrideSecureProcessing” on page 75.

Incorrect value for Windows 8.1 and Windows 10 in the java
-version output

The executable files in this release do not contain the manifest information that is
required to properly display the Windows version information in the output from
the java -version command. Windows 8.1 and Windows 10 are incorrectly
reported as Windows 8.

Support for virtualization software
This release is tested with a number of virtualized server products.

This release has been tested with the following virtualization software:

Table 7. Virtualization software tested

Vendor Architecture Server virtualization Version

IBM z Systems PR/SM™ z13, z10™, z11, z196,
zEC12

IBM z Systems z/VM® 6.1, 6.2

IBM z Systems KVM for IBM z
Systems

1.1.0

IBM POWER PowerVM®

Hypervisor
Power® 6, Power 7,
Power 8

VMware x86-64 VMware ESX and
ESXi Server

4.1, 5.0

Red Hat x86-64 Red Hat Enterprise
Virtualization
(RHEV)

2.1, 3.0

SUSE x86-64 SUSE KVM SLES 11

Microsoft x86-64 Hyper-V Server 2012

Docker, Inc x86-64 Docker V1.6 or later (see
note)

Note: IBM supports all versions of the SDK that run in Docker containers,
provided that the Docker images are based on supported operating systems. To
find out which operating systems are supported for the IBM SDK, see

Appendix. Appendixes 121

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|||
|
|

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/
com.ibm.java.doc.user.lnx.60/user/supported_env.html .

122 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.user.lnx.60/user/supported_env.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.doc.user.lnx.60/user/supported_env.html

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2003, 2016 123

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data discussed herein is presented as derived under specific
operating conditions. Actual results may vary.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

124 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Intel, Intel logo, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel
Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks of Intel Corporation
in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Notices 125

http://www.ibm.com/legal/us/en/copytrade.shtml

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see: (i) IBM’s Privacy Policy at http://www.ibm.com/privacy ; (ii)
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details (in
particular, the section entitled “Cookies, Web Beacons and Other Technologies”);
and (iii) the “IBM Software Products and Software-as-a-Service Privacy Statement”
at http://www.ibm.com/software/info/product-privacy.

126 IBM SDK, Java Technology Edition, Version 6: Windows User Guide

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

Notices 127

IBM®

Printed in USA

	Contents
	Preface
	Chapter 1. Overview
	Version compatibility
	Migrating from earlier IBM SDK or JREs
	Supported environments

	Chapter 2. Contents of the SDK and Runtime Environment
	Contents of the Runtime Environment
	Contents of the SDK

	Chapter 3. Installing and configuring the SDK and Runtime Environment
	Installing and configuring the SDK and Runtime Environment
	Enabling the IBM Accessibility Bridge
	Disabling Java Accessibility support
	Information for European language users
	Setting the path
	Setting the class path
	Updating your SDK or JRE for Daylight Saving Time changes

	Chapter 4. Running Java applications
	The java and javaw commands
	Obtaining version information
	Specifying Java options and system properties
	Standard options
	Globalization of the java command

	Executing a Java file automatically
	Running Java applications with native assistive technologies
	The Just-In-Time (JIT) compiler
	Disabling the JIT
	Enabling the JIT
	Determining whether the JIT is enabled

	Specifying a garbage collection policy
	Garbage collection options
	Increased heap sizes using a split heap
	Pause time
	Pause time reduction
	Environments with very full heaps

	Euro symbol support
	Using Indian and Thai input methods

	Chapter 5. Developing Java applications
	Using XML
	Migrating to the XL-TXE-J
	Securing Java API for XML processing (JAXP) against malformed input
	XML reference information
	XL XP-J reference information
	XL TXE-J reference information
	Using an older version of Xerces or Xalan

	Debugging Java applications
	Java Debugger (JDB)
	Selective debugging

	Determining whether your application is running on a 32-bit or 64-bit JVM
	Determining which JVM version your application is running on
	How the JVM processes signals
	Signals used by the JVM
	Linking a native code driver to the signal-chaining library

	Writing JNI applications
	Supported compilers
	JNI runtime linking

	Configuring large page memory allocation
	CORBA support
	System properties for tracing the ORB
	System properties for tuning the ORB
	Java security permissions for the ORB
	ORB implementation classes

	RMI over IIOP
	Implementing the Connection Handler Pool for RMI
	Enhanced BigDecimal
	Support for the Java Attach API

	Chapter 6. Plug-in, Applet Viewer and Web Start
	Using the Java plug-in
	Supported browsers
	Installing the Java plug-in using the Java control panel
	Secure Static Versioning (SSV) support
	Common Document Object Model (DOM) support
	Using DBCS parameters

	Working with applets
	Running and debugging applets with the Applet Viewer
	Unique CLSIDs

	Using Web Start
	Running Web Start
	WebStart Secure Static Versioning

	Distributing Java applications

	Chapter 7. Class data sharing between JVMs
	Overview of class data sharing
	Class data sharing command-line options
	Creating, populating, monitoring, and deleting a cache
	Performance and memory consumption
	Considerations and limitations of using class data sharing
	Cache size limits
	JVMTI RetransformClasses() is unsupported
	Runtime bytecode modification
	Operating system limitations
	Using SharedClassPermission

	Adapting custom class loaders to share classes

	Chapter 8. Service and support for independent software vendors
	Chapter 9. Accessibility
	Keyboard traversal of JComboBox components in Swing
	Web Start accessibility

	Chapter 10. General note about security
	Appendix. Appendixes
	Command-line options
	Specifying command-line options
	General command-line options
	System property command-line options
	-Dcom.ibm.CORBA.CommTrace
	-Dcom.ibm.CORBA.Debug
	-Dcom.ibm.CORBA.Debug.Output
	-Dcom.ibm.dbgmalloc
	-Dcom.ibm.HTTPSPNEGOCrossRealm
	-Dcom.ibm.jsse2.renegotiate
	-Dcom.ibm.lang.management.verbose
	-Dcom.ibm.IgnoreMalformedInput
	-Dcom.ibm.mappedByteBufferForce
	-Dcom.ibm.rational.mvfs.checking
	-Dcom.ibm.signalhandling.ignoreLogoff
	-Dcom.ibm.streams.CloseFDWithStream
	-Dcom.ibm.tools.attach.enable
	-Dcom.ibm.UseCLDR16
	-Dcom.ibm.xtq.processor.overrideSecureProcessing
	-Dcom.ibm.zipfile.closeinputstreams
	-Dfile.encoding
	-Dibm.jvm.bootclasspath
	-Dibm.stream.nio
	-Djava.compiler
	-Djava.util.Arrays.useLegacyMergeSort
	-Djavax.xml.namespace.QName.useCompatibleHashCodeAlgorithm
	-Djdk.map.althashing.threshold
	-Djdk.xml.entityExpansionLimit
	-Djdk.xml.maxGeneralEntitySizeLimit
	-Djdk.xml.maxOccur
	-Djdk.xml.maxParameterEntitySizeLimit
	-Djdk.xml.maxXMLNameLimit
	-Djdk.xml.resolveExternalEntities
	-Djdk.xml.totalEntitySizeLimit
	-Dsun.awt.keepWorkingSetOnMinimize
	-Dsun.net.client.defaultConnectTimeout
	-Dsun.net.client.defaultReadTimeout
	-Dsun.nio.MaxDirectMemorySize
	-Dsun.reflect.inflationThreshold
	-Dsun.rmi.transport.tcp.connectionPool
	-Dswing.useSystemFontSettings

	JVM command-line options
	-X
	-Xaggressive
	-Xargencoding
	-Xbootclasspath
	-Xcheck
	-Xclassgc
	-Xcompressedrefs
	-Xdbg
	-Xdiagnosticscollector
	-Xdisablejavadump
	-Xdump
	-Xenableexplicitgc
	-Xfastresolve
	-Xfuture
	-Xiss
	-Xjarversion
	-Xjni
	-Xlinenumbers
	-Xlog
	-Xlp
	-Xmso
	-Xnoagent
	-Xnoclassgc
	-Xnocompressedrefs
	-Xnolinenumbers
	-Xnosigcatch
	-Xnosigchain
	-Xoptionsfile
	-Xoss
	-Xrdbginfo
	-Xrs
	-Xrun
	-Xscmx
	-XselectiveDebug
	-Xshareclasses
	-Xsigcatch
	-Xsigchain
	-Xss
	-Xssi
	-Xthr
	-XtlhPrefetch (64-bit)
	-Xtrace
	-Xtune:virtualized
	-Xverify
	-Xzero

	JVM -XX command-line options
	-XXallowvmshutdown
	-XX:codecachetotal
	-XX:MaxDirectMemorySize
	-XX:-StackTraceInThrowable
	-XX:[+|-]UseCompressedOops (64-bit only)

	JIT and AOT command-line options
	-Xaot
	-Xcodecache
	-Xcodecachetotal
	-Xint
	-Xjit
	-Xnoaot
	-Xnojit
	-Xquickstart
	-XsamplingExpirationTime
	-Xscmaxaot
	-Xscminaot

	Garbage Collector command-line options
	-Xalwaysclassgc
	-Xclassgc
	-Xcompactexplicitgc
	-Xcompactgc
	-Xconcurrentbackground
	-Xconcurrentlevel
	-Xconcurrentslack
	-Xconmeter
	-Xdisableexcessivegc
	-Xdisableexplicitgc
	-Xdisablestringconstantgc
	-Xenableexcessivegc
	-Xenablestringconstantgc
	-Xgc
	-Xgc:splitheap
	-Xgcpolicy
	-Xgcthreads
	-Xgcworkpackets
	-Xloa
	-Xloainitial
	-Xloamaximum
	-Xloaminimum
	-Xmaxe
	-Xmaxf
	-Xmaxt
	-Xmca
	-Xmcrs
	-Xmco
	-Xmine
	-Xminf
	-Xmint
	-Xmn
	-Xmns
	-Xmnx
	-Xmo
	-Xmoi
	-Xmos
	-Xmox
	-Xmr
	-Xmrx
	-Xms
	-Xmx
	-Xnoclassgc
	-Xnocompactexplicitgc
	-Xnocompactgc
	-Xnoloa
	-Xnopartialcompactgc
	-Xpartialcompactgc
	-Xsoftmx
	-Xsoftrefthreshold
	-Xtgc
	-Xverbosegclog

	Default settings for the JVM
	Known issues and limitations
	Support for virtualization software

	Notices
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement

